Highly sensitive and a multiplex assay of viruses and viral DNAs in complex biological samples is extremely important for clinical diagnosis and prognosis of pathogenic diseases as well as virology studies. We present an effective ICP-MS-based multiplex and ultrasensitive assay of viral DNAs with lanthanide-coded oligonucleotide hybridization and rolling circle amplification (RCA) strategies on biofunctional magnetic nanoparticles (MNPs), in which single-stranded capture DNA (ss-Cap-DNA)-functionalized MNPs (up to 1.65 × 10(4) ss-Cap-DNA per MNP) were used to recognize and enrich target DNAs, and single-stranded report DNA (ss-Rep-DNA-DOTA-Ln) coded by the lanthanide-DOTA complex hybridized with the targeted DNA for highly sensitive readout of HIV (28 amol), HAV (48 amol), and HBV (19 amol). When utilizing the RCA technique in association with the design and synthesis of a "bridge" DNA and a corresponding ss-Rep-DNA-DOTA-Ho, as low as 90 zmol HBV could be detected. Preliminary applications to the determination of the viral DNAs in 4T1 cell lysates and in serum confirmed the feasibility of this ICP-MS-based multiplex DNA assay for clinical use. One can expect that this element-coded ICP-MS-based multiplex and ultrasensitive DNA assay will play an ever more important role in the fields of bioanalysis and virology and in medical studies after further sophisticated modifications.
Quantitative proteomics requires novel analytical methodology to fill the gap related to absolute protein abundance in different physiological conditions. In this paper, we demonstrate a proof-of-concept study for absolute protein quantification. 1,4,7,10-Tetraazacyclododecane-1,4,7-trisacetic acid-10-maleimidoethylacetamide (MMA-DOTA) loaded with Eu was used to label lysozyme, insulin, and ribonuclease A, and they were subsequently quantified using HPLC coupled with (153)Eu species-unspecific isotope dilution inductively coupled plasma mass spectrometry (ICPMS). Labeling procedures were optimized using electrospray ionization mass spectrometry (ESI-MS) based on the labeling efficiency and specificity of the three intact proteins, which suggested that 10-fold or higher MMA-DOTA to cysteine sulphydryl rates at pH from 6.8 to 7.6 and 47 degrees C for 40 min were optimal conditions for the conjugation of the reduced-form proteins and that a 5-fold excess of Eu with respect to the DOTA present in the MMA-DOTA-conjugated proteins and pH 5.8 are optimal for Eu labeling. Subsequently, these three MMA-DOTA-Eu-labeled proteins were digested with trypsin, and the tryptic peptides were quantified via HPLC coupled with (153)Eu species-unspecific isotope dilution ICPMS. The results for the protein studied indicated that not only could 100% digestion efficiency not be achieved but also the resulting peptides needed a chromatographic separation at higher resolution. On the other hand, the labeled intact proteins were quantified without tryptic digestion. The average recovery was found to be 97.9% in six independent experiments, and the precision was evaluated to be 5.8% at the 10 pmol L(-1) level. The detection limits (3sigma) were determined to be 0.819, 1.638, and 0.819 fmol for lysozyme, the A chain of insulin, and ribonuclease A, respectively, using ICPMS with a normal concentric pneumatic nebulizer. These results demonstrated that high-quality absolute protein quantification could be achieved through labeling the intact proteins but not the tryptic peptides, implying that intact proteins may be more feasible and practical targets than tryptic peptides for ICPMS-based absolute protein quantification.
Counting and recognizing single bacterial cells are crucial to the diagnosis of bacterium-induced disease and study of cell-to-cell variability as well as the related antibiotic resistance mechanism. A higher sensitive and selective method has always been desired for a more accurate single bacterial cell analysis. We report a lanthanide-encoding inductively coupled plasma (ICP) mass spectrometric approach for counting and recognizing single bacterial cells for the first time. When noncanonical alkyne-d-alanine (aDA) was added to five typical bacterial strains of Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Shigella dysenteriae, and Vibrio parahemolyticus, aDA was metabolically assembled into the peptidoglycan layer-supported bacterial cell wall followed by post-clickable europium-tagging with 1,4,7,10-tetraazacyclododecane-1,4,7-tris-acetic acid-10-azidopropyl ethylacetamide-europium complex (azide-DOTA-Eu). Such Eu-tagged bacterial cells can be deemed as Eu-engineered particles, delivering more than 5 orders of magnitude self-signal-amplification outcome relative to the single bacterial cells themselves when 151/153Eu is determined by single particle ICP mass spectrometry (spICPMS). This metabolic assembly of aDA mediated Eu-encoding signal amplification strategy breaks through the detection limit of spICPMS and ensures that we directly count a single bacterial cell. The individual bacterial strains we counted can be simultaneously recognized through their corresponding lanthanide (Ln)-coded polyclonal antibody (Ln = 139La, 141Pr, 142Nd, 152Sm, and 160Gd, respectively), serving as a specific bacterial identification (Ln-pAb-ID). Moreover, the developed approach was applied to show the different behavior between genetically identical Staphylococcus aureus under the treatments of vancomycin and Ag nanoparticles, demonstrating that such a lanthanide-encoding spICPMS approach provided a new way to discover still ambiguous cell-to-cell variability.
Although circulating tumor cells (CTCs) have great potential to act as the mini-invasive liquid biopsy cancer biomarker, a rapid and sensitive CTC detection method remains lacking. CRISPR-Cas12a has recently emerged as a promising tool in biosensing applications with the characteristic of fast detection, easy operation, and high sensitivity. Herein, we reported a CRISPR-Cas12a-based CTC detection sensor that is regulated by the multivalent duplexed-aptamer networks (MDANs). MDANs were synthesized on a magnetic bead surface by rolling circle amplification (RCA), which contain multiple duplexed-aptamer units that allow structure switching induced by cell-binding events. The presence of target cells can trigger the release of free "activator DNA" from the MDANs structure to activate the downstream CRISPR-Cas12a for signal amplification. Furthermore, the 3D DNA network formed by RCA products also provided significantly higher sensitivity than the monovalent aptamer. As a proof-of-concept study, we chose the most widely used sgc8 aptamer that specifically recognizes CCRF-CEM cells to validate the proposed approach. The MDANs-Cas12a system could afford a simple and fast CTC detection workflow with a detection limit of 26 cells mL −1 . We also demonstrated that the MDANs-Cas12a could directly detect the CTCs in human blood samples, indicating a great potential of the MDANs-Cas12a in clinical CTC-based liquid biopsy.
In this work, novel thin-film nanocompostie NF membranes were developed through modification with maleic anhydride functionalized graphene oxideviainterfacial polymerization, which showed the enhanced water flux with retaining high salt rejection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.