The result of collision detection is closely related to the further deformation or cutting action of soft tissue. In order to further improve the efficiency and stability of collision detection, in this paper, a collision detection algorithm of bounding volume hierarchy based on virtual sphere was proposed. The proposed algorithm was validated and the results show that the detection efficiency of the bounding volume hierarchy algorithm based on virtual sphere is higher than that of the serial hybrid bounding volume hierarchy algorithm and the parallel hybrid bounding volume hierarchy algorithm. Different collision detection algorithms were tested and the results show that the collision detection algorithm based on virtual sphere has high detection efficiency and good stability. As the number of triangular patches increased, the advantage was more and more obvious. Finally, the proposed algorithm was applied to two large and medium-sized virtual scenes to implement the collision detection between the vastus lateralis muscle, thigh and surgical instrument. Based on the virtual sphere, the collision detection algorithm of bounding volume hierarchy can implement efficient and stable collision detection in a virtual surgery system. Meanwhile, the algorithm can be combined with other acceleration algorithms (such as the multithread acceleration algorithm) to further improve detection efficiency. models. Detection algorithm should meet the authenticity requirement and fluency requirement, and can implement real-time user interaction. 1 At present, the collision detection algorithm can be divided into two categories, one is based on temporal domain, the other is based on spatial domain. The collision detection algorithm based on temporal domain is divided into static collision detection, constant collision detection and discrete collision detection. [2][3][4] The collision detection algorithm based on spatial domain is divided into collision detection algorithm based on entity space and collision detection algorithm based on image space. 5 In recent years, with the development of research on virtual surgery, the researches on the collision detection of the human tissue model in the virtual scene are gradually increasing. 6 Good simulation results in some research have been achieved.Bournemouth University in the UK has developed a collision detection in a virtual scene with a rectum as an environmental model. They used a geometric projection method to handle the collision, which directly corrected the positions of spheres after a contact was detected. In this method, there was no need to compute the penalty forces and hence the solving process was speeded up.Researchers from Kagawa University in Japan developed a fast collision detection algorithm based on axis-aligned bounding box (AABB) method for the virtual reality training system. In this algorithm, there are two key collision detection areas: Area I: the area around the catheter tip and Area II: the previous collision area. Area I is a dynamic area and it will chang...
BACKGROUND: The current excitation-contraction coupling model of fast-twitch skeletal muscle fibers cannot completely simulate the excitation-contraction process. OBJECTIVE: To solve this problem, this study proposes an excitation-contraction model of fast-twitch skeletal muscle fibers based on the physiological structure and contractile properties of half-sarcomeres. METHODS: The model includes the action potential model of fast-twitch fiber membranes and transverse tubule membranes, the cycle model of Ca 2+ in myofibril, the cross-bridge cycle model, and the fatigue model of metabolism. RESULTS: Finally, detailed analyses of the results from the simulation are conducted using the Simulink toolbox in MATLAB. Two conditions, non-coincidence and coincidence, are analyzed for both the thick and thin myofilaments. CONCLUSIONS: The simulation results of two groups of models are the same as the previous research results, which validates the accuracy of models.
Skeletal muscle energy metabolism plays a very important role in controlling movement of the whole body and has important theoretical guidance for making exercise training plans and losing weight. In this paper, we developed a mathematical model of skeletal muscle excitation–contraction pathway based on the energy metabolism that links excitation to contraction to explore the effects of different metabolic energy systems on calcium ion changes and the force during skeletal muscle contraction. In this paper, a membrane potential model, a calcium cycle model, a cross-bridge dynamics model and an energy metabolism model were established. Finally, the physiological phenomenon of calcium ion transport and calcium ion concentration change of the sarcoplasm was simulated. The results show that the phosphagen system has the fastest metabolic rate and the phosphagen system has the largest impact on the explosive power of skeletal muscle exercise. The specific characteristics of the three metabolic energy systems supporting skeletal muscle movement in vivo were also analyzed in detail.
According to the mechanical conditions of fracture fixation and the oxygen levels in the tissues, a simulation model of fracture healing process was built to describe the relationship among mechanical stability, oxygen levels in tissues and tissue differentiation during the second fracture healing. Different from the previous simulation model, in this paper, we took the threedimensional model as the research object, solved the mechanical stimulation by finite element method, established the partial differential equation to solve the spatial and temporal variation of the oxygen in tissues. The process of tissue differentiation was described by fuzzy control method. The initial stage of fracture healing, intramembranous ossification, chondrogenesis, cartilage calcification and endochondral ossification during the fracture healing process were simulated, and the properties of tissue materials were continuously updated to complete the iterative process. The simulation program of fracture healing process was independently developed in Eclipse environment, and the simulation results were compared with experimental data and those of other fracture healing simulation models to verify the simulation program in this paper. Finally, the processes of transverse fracture healing in rats with different axial stability under normoxic, hypoxic and hyperoxic conditions was simulated, and the effects of different tissue oxygen levels and interosseous stabilities on fracture healing were analyzed. It is concluded by simulation that the delayed healing or non-union of bone will occur when in state of tissue hypoxia or interosseous instability, normal healing will occur when in state of tissue normoxia, and the healing will be accelerated when in state of tissue hyperoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.