Cytokines are small proteins that have an essential role in the immune and inflammatory responses. The repertoire of cytokines is becoming diverse and expanding. Here we report the identification and characterization of a novel cytokine designated as chemokine-like factor 1 (CKLF1). The full-length cDNA of CKLF1 is 530 bp long and a single open reading frame encoding 99 amino acid residues. CKLF1 bears no significant similarity to any other known cytokine in its amino acid sequence. Expression of CKLF1 can be partly inhibited by interleukin 10 in PHA-stimulated U937 cells. Recombinant CKLF1 is a potent chemoattractant for neutrophils, monocytes and lymphocytes; moreover, it can stimulate the proliferation of murine skeletal muscle cells. These results suggest that CKLF1 might have important roles in inflammation and in the regeneration of skeletal muscle.
Tip60 is a histone acetyltransferase (HAT) involved in the acetyltransferase activity and the cellular response to DNA damage. Here, we show that programmed cell death 5 (PDCD5), a human apoptosis-related protein, binds to Tip60 and enhances the stability of Tip60 protein in unstressed conditions. The binding amount of PDCD5 and Tip60 is significantly increased after UV irradiation. Further, PDCD5 enhances HAT activity of Tip60 and Tip60-dependent histone acetylation in both basal and UV-induced levels. We also find that PDCD5 increases Tip60-dependent K120 acetylation of p53 and participates in the p53-dependent expression of apoptosis-related genes, such as Bax. Moreover, we demonstrate the biological significance of the PDCD5-Tip60 interaction; that is, they function in cooperation to accelerate DNA damage-induced apoptosis and knockdown of PDCD5 or Tip60 impairs their apoptosis-accelerating activity, mutually. Consistent with this, PDCD5 levels increase significantly on DNA damage in U2OS cells, as does Tip60. Together, our findings indicate that PDCD5 may play a dual role in the Tip60 pathway. Specifically, under normal growth conditions, PDCD5 contributes to maintaining a basal pool of Tip60 and its HAT activity. After DNA damage, PDCD5 functions as a Tip60 coactivator to promote apoptosis.
The programmed cell death 5 (PDCD5) protein is a novel protein related to regulation of cell apoptosis. In this report, we demonstrate that the level of PDCD5 protein expressed in cells undergoing apoptosis is significantly increased compared with normal cells, then the protein translocates rapidly from the cytoplasm to the nucleus of cells. The appearance of PDCD5 in the nuclei of apoptotic cells precedes the externalization of phosphatidylserine and fragmentation of chromosome DNA. This phenomenon is parallel to the loss of mitochondrial membrane potential, independent of the feature of apoptosisinducing stimuli and also independent of the cell types and the apoptosis modality. In conclusion, the nuclear translocation of PDCD5 is a universal earlier event of the apoptotic process, and may be a novel early marker for apoptosis. ß
Programmed cell death can be divided into apoptosis and autophagic cell death. We describe the biological activities of TMEM166 (transmembrane protein 166, also known as FLJ13391), which is a novel lysosome and endoplasmic reticulum-associated membrane protein containing a putative TM domain. Overexpression of TMEM166 markedly inhibited colony formation in HeLa cells. Simultaneously, typical morphological characteristics consistent with autophagy were observed by transmission electron microscopy, including extensive autophagic vacuolization and enclosure of cell organelles by double-membrane structures. Further experiments confirmed that the overexpression of TMEM166 increased the punctate distribution of MDC staining and GFP-LC3 in HeLa cells, as well as the LC3-II/LC3-I proportion. On the other hand, TMEM166-transfected HeLa and 293T cells succumbed to cell death with hallmarks of apoptosis including phosphatidylserine externalization, loss of mitochondrial transmembrane potential, caspase activation and chromatin condensation. Kinetic analysis revealed that the appearance of autophagy-related biochemical parameters preceded the nuclear changes typical of apoptosis in TMEM166-transfected HeLa cells. Suppression of TMEM166 expression by small interference RNA inhibited starvation-induced autophagy in HeLa cells. These findings show for the first time that TMEM166 is a novel regulator involved in both autophagy and apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.