To ideally solve the contradiction between enhanced cellular uptake and prolonged blood circulation, reversible targeting polymeric micelles based on the expanding and shrinking behavior of a temperature-responsive polymer were developed. The micelle contained a hydrophobic PCL core and a mixed shell consisting of poly(N-isopropylacrylamide) (PNIPAAm) and biotin-terminated poly(ethylene glycol) (Biotin-PEG), and its targeting ability could be switched on/off by temperature. The cellular uptake of the complex polymeric micelles was studied. The results from a quantitative enzyme-linked immunosorbent assay (ELISA) indicated that the surface biotin content increased by as much as 11.6-fold when the temperature increased above the lower critical solution temperature (LCST). More importantly, the ELISA confirmed that biotin-mediated targeting on the surface was reversibly switched on and off for at least five cycles. In addition, the results from quantitative flow cytometry and confocal spectroscopy indicated that the cellular uptake of the targeted micelles at temperatures above the LCST was much higher than that at temperatures below the LCST. This complex polymeric micelle with reversible targeting property could be a promising alternative for drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.