Polypeptide and Western immunoblot profiles of subcellular fractions of Treponema denticola ATCC 33520 have been determined by SDS-PAGE of Triton X-100-soluble and -insoluble fractions, a lipopolysaccharide-enriched fraction and purified flagella. Major Triton X-100-soluble polypeptides of 72, 68, 54 and 52 kDa were detected. The 54 kDa polypeptide appeared to be a breakdown product of a larger, heat-modifiable polypeptide. Based on the results of SDS-PAGE analysis and immunoblotting of proteinase K digests of T. denticola, a 'rough' lipopolysaccharide appeared to be present. Electron microscopy has been used to monitor the effect of detergent treatment on the morphology of the organism and to examine the detailed structure of the flagella. Treatment with Triton removed the T. denticola outer membrane, resulting in exposure of the flagella. The flagella were shown to have a complex sheath and core structure and polypeptide composition characteristic of that observed for other treponemes. Polypeptides of 38, 35, 32 and 28 kDa were present in purified flagella preparations. Immunoelectron microscopy, iodine-labelling and Western blotting were used to demonstrate the exposure of antigens on the T. denticola surface. Surface iodination located polypeptides of 72, 68 and 54 kDa. Antiserum raised against whole cells of T. denticola recognized these polypeptides and an additional polypeptide of 52 kDa. These data provide a basis for future detailed molecular analysis of the ultrastructure and antigenicity of T. denticola.
The P.69 Bordetella pertussis protective antigen was expressed by use of the trc promoter from the chromosome of a SalmoneUla typhimurium aro vaccine strain, BRD509, by integrating the pmn gene, encoding the 93-kDa precursor of this protein, into the aroC locus. P.69 was detected on the cell surface of the S. typhimurium strain (BRD640) by agglutination and immunoelectron microscopy. BALB/c mice immunized orally or intravenously with BRD640 showed a significant level of protection against an aerosol challenge with virulent B. pertussis, compared with control animals. No anti-P.69 antibodies in the serum or anti-P.69 antibody-secreting cells in the lungs were detected in BRD640-vaccinated animals, although cells isolated from spleens showed a P.69-dependent cell proliferative response. In contrast, low levels of anti-P.69 antibodies in the serum and anti-P.69 antibody-secreting cells in the lungs were detected in immunized mice following a B. pertussis challenge.
Recombinant Salmonella typhimurium aroA aroD mutants which expressed ovalbumin were constructed. The two expression constructs used were based on either pUC18 or pBR322. The pBR322-based construct was more stable in vitro and in vivo than the pUC-based construct. Salmonellae containing the stable pBR322-based plasmid induced major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTL), in contrast to salmonellae containing the pUC18-based expression construct. The priming of MHC class I-restricted CTL was increased by multiple immunizations. The study described in this report suggest that S. typhimurium delta aro mutants have the capacity to induce MHC class I-restricted CTL against carried antigens and that MHC class I-restricted CTL responses require stable in vivo expression of the target antigen. Further, the results indicate that the Salmonella typhi delta aro mutants currently undergoing evaluation in studies with humans may be good carriers of viral antigens with CTL determinants.
Initiation of attaching-effacing lesions, which characterize infections with rabbit enteropathogenic Escherichia coli (REPEC), requires bacteria to adhere to the intestinal epithelium. This adherence is reflected in vitro by the affinity of these E. coli strains for various types of eukaryotic cells. TnphoA mutants of REPEC 83/39 (O15:H؊) which had lost the ability to adhere to HEp-2 epithelial cells, guinea pig ileal brush borders, and mouse erythrocytes were generated. DNA sequencing of the region surrounding the inactivating transposon insertions within a 95-kb plasmid, designated pRAP for REPEC adherence plasmid, revealed extensive homology between that region and the structural genes of enterotoxigenic E. coli operons encoding the K88 and CS31A fimbrial adhesins and the genes for the afr2 adhesin from REPEC B10 (O103:H2). Seven genes of the ral operon (for REPEC adherence locus), including three putative minor fimbrial subunit genes (ralC, ralF, and ralH), a major fimbrial subunit gene (ralG), a gene of unknown function (ralI), and genes for two fimbrial subunit chaperones (ralD and ralE), were sequenced. When inoculated perorally into weanling rabbits, a mutant with a TnphoA insertion in the ralE gene showed a 10-fold reduction in colonizing ability, with only 1 of 10 rabbits excreting bacteria compared to all 5 of those infected with the wild-type parent strain (P ؍ 0.002). The severity of the diarrheal illness caused by the mutant strain was also reduced. Western blotting of surface protein extracts of strain 83/39 with hyperimmune anti-83/39 antiserum, adsorbed with the ralE mutant, revealed a 32-kDa protein which was absent from protein extracts of two nonadherent mutants. The adsorbed antiserum also bound to the surface of strain 83/39 but not to nonadherent mutants, as detected by immunogold labeling. These results indicate that the ral operon of REPEC 83/39 contains genes necessary for the biosynthesis of fine fimbriae which are responsible for in vitro adherence of the bacteria and play a role in their colonization of, and hence virulence for, rabbits. The putative major fimbrial subunit is a protein with an observed molecular size of approximately 32 kDa which, when assembled, appears to form a capsule of fimbriae surrounding the bacterium similar to that described for CS31A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.