We addressed the ability of various organophosphorus (OP) hydrolases to catalytically scavenge toxic OP nerve agents. Mammalian paraoxonase (PON1) was found to be more active than Pseudomonas diminuta OP hydrolase (OPH) and squid O,O-di-isopropyl fluorophosphatase (DFPase) in detoxifying cyclosarin (O-cyclohexyl methylphosphonofluoridate) and soman (O-pinacolyl methylphosphonofluoridate). Subsequently, nine directly evolved PON1 variants, selected for increased hydrolytic rates with a fluorogenic diethylphosphate ester, were tested for detoxification of cyclosarin, soman, O-isopropyl-O-(p-nitrophenyl) methyl phosphonate (IMP-pNP), DFP, and chlorpyrifos-oxon (ChPo). Detoxification rates were determined by temporal acetylcholinesterase inhibition by residual nonhydrolyzed OP. As stereoisomers of cyclosarin and soman differ significantly in their acetylcholinesterase-inhibiting potency, we actually measured the hydrolysis of the more toxic stereoisomers. Cyclosarin detoxification was $ 10-fold faster with PON1 mutants V346A and L69V. V346A also exhibited fourfold and sevenfold faster hydrolysis of DFP and ChPo, respectively, compared with wild-type, and ninefold higher activity towards soman. L69V exhibited 100-fold faster hydrolysis of DFP than the wildtype. The active-site mutant H115W exhibited 270-380-fold enhancement toward hydrolysis of the P-S bond in parathiol, a phosphorothiolate analog of parathion. This study identifies three key positions in PON1 that affect OP hydrolysis, Leu69, Val346 and His115, and several amino-acid replacements that significantly enhance the hydrolysis of toxic OPs. GC ⁄ pulsed flame photometer detector analysis, compared with assay of residual acetylcholinesterase inhibition, displayed stereoselective hydrolysis of cyclosarin, soman, and IMP-pNP, indicating that PON1 is less active toward the more toxic optical isomers.
Organophosphorus (OP) insecticides and nerve agents that contain P-S bond are relatively more resistant to enzymatic hydrolysis. Purified phenol oxidase (laccase) from the white rot fungus Pleurotus ostreatus (Po) together with the mediator 2,2P-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) displayed complete and rapid oxidative degradation of the nerve agents VX and Russian VX (RVX) and the insecticide analog diisopropyl-Amiton with specific activity: k sp = 2200, 667 and 1833 nmol min 3I mg 3I , respectively (pH 7.4, 37³C). A molar ratio of 1:20 for OP/ABTS and 0.05 M phosphate at pH 7.4 provided the highest degradation rate of VX and RVX. The thermostable laccase purified from the fungus Chaetomium thermophilium (Ct) in the presence of ABTS caused a 52-fold slower degradation of VX with k sp = 42 nmol min 3I mg 3I . The enzymatic biodegradation products were identified by QI P-NMR and GC/MS analysis.z 1998 Federation of European Biochemical Societies.
Certain organophosphorus (OP) nerve agents (e.g. soman) induce neuroinflammatory processes during acute poisoning. An increased level of typical inflammation markers was also observed in poisoning by alkylating agents such as sulfur mustard (HD). The therapeutic potential of new bifunctional compounds was investigated, eliciting activity of non-steroidal anti-inflammatory drug (NSAID) and anti-cholinesterase (anti-ChE) activity, as an antidotal treatment for both soman and HD poisoning in mice. Three bifunctional compounds were used that include the ChE inhibitor pyridostigmine (PYR) coupled to either ibuprofen (IBU) or diclofenac (DICLO) through an eight (octyl) or ten (decyl) hydrocarbon chain spacer: IBU-PO, IBU-PD and DICLO-PD. These compounds are 15-25 fold less toxic than PYR in mice and exert peripheral and central anti-inflammatory and anti-ChE activity in vivo. IBU-PO (4 mg kg(-1), i.p.), IBU-PD (4 mg kg(-1), i.p.) and PYR (0.13 mg kg(-1), i.p.) reduced to control levels the brain edema in soman-poisoned mice (1.1 LD50, s.c.). Pre-treatment with IBU-PO, IBU-PD and DICLO-PD 4-5 h before soman challenge (2.2-2.3 LD50, s.c.) combined with antidotal treatment (atropine, 11 mg kg(-1), 2-PAM-Cl, 25 mg kg(-1), i.m.) afforded a longer 24 h survival rate (SR) than with PYR pre-treatment. DICLO-PD exhibited the largest protection efficacy (SR = 70% vs 17% with PYR). These results indicate a longer duration of action of bifunctional compounds compared with PYR. DICLO-PD (5% in propyleneglycol) reduced significantly the HD-induced edema in mouse ear-skin (51% increase in biopsy weight compared with 100% without treatment). Quantitative evaluation of ear-skin sections showed that only following DICLO-PD treatment was there a marked decrease in edema. DICLO-PD also elicited a significant decrease in HD-induced vesication as displayed by the reduced sub-epidermal blister level. The data indicate possible use of NSAID-ChEI bifunctional compounds for the medical treatment of both nerve and alkylating chemical agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.