The current trend towards minimum-intervention dentistry has introduced laser technology as an alternative technique for cavity preparation. This study assessed the null hypothesis that enamel prepared either by Er,Cr:YSGG laser or conventional diamond bur is equally receptive to adhesive procedures. The buccal and lingual surfaces of 35 sound human molars were prepared with Er,Cr:YSGG laser or a medium-grit diamond bur. One etch&rinse (OptiBond FL) and three self-etch adhesives (Adper Prompt L-Pop, Clearfil SE Bond and Clearfil S3 Bond) were applied on laser-irradiated and bur-cut enamel, followed by the application of a 5-6 mm build-up of Z100. The micro-tensile bond strength (microTBS) was determined after 24 hours of storage in water at 37 degrees C. Prepared enamel surfaces and failure patterns were evaluated using a stereomicroscope and a field-emission-gun scanning electron microscope (Feg-SEM). The pTBS to laser-irradiated enamel was significantly lower than to bur-cut enamel (p<0.05), with the exception of Clearfil S3 Bond, which bonded equally effectively to both substrates. The latter presented the highest microTBS on laser-irradiated enamel, though it was not statistically different from the microTBS of OptiBond FL. SEM analysis revealed significant morphological alterations of the laser-irradiated enamel surface, such as areas of melted and recrystalized hydroxyapatite and deep extensive micro-cracks. In conclusion, the bonding effectiveness of adhesives to laser-irradiated enamel depends not only on the structural substrate alterations induced by the laser, but also on the characteristics of the adhesive employed.
Dental caries is a multifactorial disease that can be conceptualized as an interaction between genetic and environmental risk factors. The aim of this study is to examine the effects of AMELX, CA6, DEFB1, and TAS2R38 gene polymorphism and gene-environment interactions on caries etiology and susceptibility in adults. Genomic DNA was extracted from the buccal mucosa, and adults aged 20 to 60 y were placed into 1 of 2 groups: low caries risk (DMFT ≤ 5; n = 77) and high caries risk (DMFT ≥ 14; n = 77). The frequency of AMELX (+522), CA6 (T55M), DEFB1 (G-20A), and TAS2R38 (A49P) single-nucleotide polymorphisms was genotyped with the polymerase chain reaction-restriction fragment length polymorphism method. Environmental risk factors examined in the study included plaque amount, toothbrushing frequency, dietary intake between meals, saliva secretion rate, saliva buffer capacity, mutans streptococci counts, and lactobacilli counts. There was no difference between the caries risk groups in relation to AMELX (+522) polymorphism (χ(2) test, P > 0.05). The distribution of CA6 genotype and allele frequencies in the low caries risk group did not differ from the high caries risk group (χ(2) test, P > 0.05). Polymorphism of DEFB1 (G-20A) was positively associated, and TAS2R38 (A49P) negatively associated, with caries risk (χ(2) test, P = 0.000). There were significant differences between caries susceptibility and each environmental risk factor, except for the saliva secretion rate (Mann-Whitney U test, P = 0.000). Based on stepwise multiple linear regression analyses, dental plaque amount, lactobacilli count, age, and saliva buffer capacity, as well as DEFB1 (G-20A), TAS2R38 (A49P), and CA6 (T55M) gene polymorphism, explained a total of 87.8% of the variations in DMFT scores. It can be concluded that variation in CA6 (T55M), DEFB1 (G-20A), and TAS2R38 (A49P) may be associated with caries experience in Turkish adults with a high level of dental plaque, lactobacilli count, and age and when saliva buffer capacity is low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.