The paper presents a short description of soil clogging processes during sewage infiltration as well as a simple theoretical model of sand clogging by suspended solids. The Kozeny-Carman equation was used to investigate the influence of the decreasing porosity due to clogging on the sand permeability. A comparison of the results obtained using the derived theoretical relationships with empirical data showed an acceptable agreement.
The aim of this study was to characterise conditions and factors affecting fine sand clogging by septic tank effluent on the basis of physical modelling. The physical model consisted of 12 sand columns dosed with sewage from one household (5 persons), preliminary treated in a septic tank. Hydraulic loadings of the sand filters were equal to 82 mm/d. The mean discharge from sand columns, measured as the effluent volume collected during 10 minutes, decreased significantly over the experiment period from 34 cm3/min in August 2000 to 20 cm3/min in August 2001 at the same temperature of about 20°C. First the columns clogged almost completely after 480 days in December 2001, however six columns had remained unclogged till the end of the experiment (March 2002). The temperature had a significant impact on hydraulic conductivity. A vertical distribution of accumulated mass and biomass was investigated in partly clogged sand. Microscopic survey of the clogging layer showed a presence of live micro-organisms, residuals of dead micro-organisms, particularly pieces of small animal armour and many fibres. These particles accelerated the accumulation of solids in the upper clogging layer. The study indicated that temperature impact on the filter hydraulic conductivity was more significant for biological activity, than for sewage viscosity.
Two types of geotextile, TS 50 and TC/PP 300, were investigated as experimental filters. The raw wastewater, pre-treated in a septic tank, was intermittently dosed and filtered under hydrostatic pressure. At the beginning, the filter reactor comprised nine filters made of geotextiles (of three types: TS 10, TS 50 and TC/PP 300). At the end of the start-up period the TS 10 filters were removed due to their high outflow instability. After four months of working, the hydraulic capacities of the remaining filters were: 3.23 cm3/cm2/d for TS 50 and 4.14 cm3/cm2/d for TC/PP 300. The efficiencies of COD and BOD5 removal were similar for both types of geotextile (COD: 64%, BOD5: 80%). A small but statistically significant difference between ammonium nitrogen removal was observed (40% for TS 50 and 35% for TC/PP 300), most probably due to their different structure. Biological removal of P(tot) was relatively poor and similar for both geotextile types. The mean concentration of matter accumulated on the geotextiles was over one order of magnitude higher than conventional activated sludge concentrations. During the last weeks of the experiments the values of basic pollution indicators in the effluent were lower than the maximum permissible values (according to Polish law).
The natural environment is constantly under threat from man-made pollution. More and more pharmaceuticals are recognized as emerging pollutants due to their growing concentration in the environment. One such chemical is ibuprofen which has been detected in processed sewage. The ineffectiveness of water methods treatment currently used raises the need for new remediation techniques, one of such is photodegradation of pollutants. In the present study, zinc(II) and copper(II) phthalocyanines were grafted onto pure anatase TiO2 nanoparticles (5 and 15 nm) to form photocatalysts for photodecomposition of ibuprofen in water. The nanoparticles were subjected to physicochemical characterization, including: thermogravimetric analysis, X-ray powder diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller surface area analysis and particle size measurements. In addition, they were assessed by means of electron spin resonance spectroscopy to evaluate the free radical generation. The materials were also tested for their photocatalytic activity under either UV (365 nm) or visible light (665 nm) irradiation. After 6 h of irradiation, almost complete removal of ibuprofen under UV light was observed, as assessed by liquid chromatography coupled to mass spectrometry. The reaction kinetics calculations revealed that the copper(II) phthalocyanine-containing nanoparticles were acting at a faster rate than those with zinc(II) derivative. The solutions after the photoremediation experiments were subjected to Microtox® acute toxicity analysis.
This article presents a small diameter gravity sewerage system in a rural area. In this system, domestic wastewater was preliminarily treated in septic tanks equipped with outlet filters, so the effluent features were similar to those of clear water. Additionally, some outlets were equipped with floating-ball check valves to avoid backflow. One of the pressure mains was used as a gravity collector conveying septic tank effluent in the direction of the pumping station during pump idle time. The operation of the system was simulated using SWMM computer code. The simulation results were validated for data obtained from part of a sewerage system in Kolonia Zolkiew and Rozki village consisting of two pumping stations and 86 serviced households using polyethylene pipes of outer diameter 50–63 mm. The results of the measurement of the outflows from one pumping station are presented. The simulation results showed good agreement with the empirical data, especially after several simulation days. The greatest discrepancy during the start-up period was the consequence of the initial conditions describing the empty pipework. Thanks to storage in the pump sumps, septic tank and pipes, as well as their smart operation, a relatively uniform inflow to the pumping stations was achieved. Simulations in SWMM showed that there is still potential to optimize the sewerage system through more adequate pump selection and pipe diameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.