No nationwide studies of the incidence rate of clinical mastitis (IRCM) have been conducted in Canada. Because the IRCM and distribution of mastitis-causing bacteria may show substantial geographic variation, the primary objective of this study was to determine regional pathogen-specific IRCM on Canadian dairy farms. Additionally, the association of pathogen-specific IRCM with bulk milk somatic cell count (BMSCC) and barn type were determined. In total, 106 dairy farms in 10 provinces of Canada participated in the study for a period of 1 yr. Participating producers recorded 3,149 cases of clinical mastitis. The most frequently isolated mastitis pathogens were Staphylococcus aureus, Escherichia coli, Streptococcus uberis, and coagulase-negative staphylococci. Overall mean and median IRCM were 23.0 and 16.7 cases per 100 cow-years in the selected herds, respectively, with a range from 0.7 to 97.4 per herd. No association between BMSCC and overall IRCM was found, but E. coli and culture-negative IRCM were highest and Staph. aureus IRCM was lowest in low and medium BMSCC herds. Staphylococcus aureus, Strep. uberis, and Streptococcus dysgalactiae IRCM were lowest in the Western provinces. Staphylococcus aureus and Strep. dysgalactiae IRCM were highest in Québec. Cows in tie-stalls had higher incidences of Staph. aureus, Strep. uberis, coagulase-negative staphylococci, and other streptococcal IRCM compared with those in free-stalls, whereas cows in free stalls had higher Klebsiella spp. and E. coli IRCM than those in tie-stall barns. The focus of mastitis prevention and control programs should differ between regions and should be tailored to farms based on housing type and BMSCC.
The goal of dry cow therapy (DCT) is to reduce the prevalence of intramammary infections (IMI) by eliminating existing IMI at drying off and preventing new IMI from occurring during the dry period. Due to public health concerns, however, preventive use of antibiotics has become questionable. This study evaluated selective DCT in 1,657 cows with low somatic cell count (SCC) at the last milk recording before drying off in 97 Dutch dairy herds. Low SCC was defined as <150,000 cells/mL for primiparous and <250,000 cells/ mL for multiparous cows. A split-udder design was used in which 2 quarters of each cow were treated with dry cow antibiotics and the other 2 quarters remained as untreated controls. The effect of DCT on clinical mastitis (CM), bacteriological status, SCC, and antibiotic use were determined at the quarter level using logistic regression and chi-squared tests. The incidence rate of CM was found to be 1.7 times (95% confidence interval = 1.4-2.1) higher in quarters dried off without antibiotics as compared with quarters dried off with antibiotics. Streptococcus uberis was the predominant organism causing CM in both groups. Somatic cell count at calving and 14 d in milk was significantly higher in quarters dried off without antibiotics (772,000 and 46,000 cells/mL, respectively) as compared with the quarters dried off with antibiotics (578,000 and 30,000 cells/mL, respectively). Quarters with an elevated SCC at drying off and quarters with a positive culture for major pathogens at drying off had a higher risk for an SCC above 200,000 cells/mL at 14 d in milk as compared with quarters with a low SCC at drying off and quarters with a negative culture for major pathogens at drying off. For quarters that were culture-positive for major pathogens at drying off, a trend for a higher risk on CM was also found. Selective DCT, not using DCT in cows that had a low SCC at the last milk recording before drying off, significantly increased the incidence rate of CM and SCC. The decrease in antibiotic use by drying off quarters without DCT was not compensated by an increase in antibiotic use for treating CM. Total antibiotic use related to mastitis was reduced by 85% in these quarters.
The goal of dry-cow therapy (DCT) is to reduce the prevalence of intramammary infections (IMI) by eliminating existing IMI at drying off and preventing new IMI from occurring during the dry period. Due to public health concerns, however, preventive use of antimicrobials has become questionable. In this study, we evaluated the effects of 8 scenarios for selecting animals for DCT, taking into account variation in parity and cow-level somatic cell count (SCC) at drying off. The aim of this study was to evaluate udder health, antimicrobial usage, and economics at the herd level when using different scenarios for selecting cows for DCT. To enable calculation and comparison of the effects of different scenarios to select cows for DCT in an "average" herd, we created an example herd, with a virtual herd size of 100 dairy cows to be calving during a year. Udder health, antimicrobial usage, and economics were evaluated during the dry period and the first 100 d in lactation, the period during which the greatest effect of DCT is expected. This leads to an estimated 13,551 cow-days at risk during a year in a 100-cow dairy herd. In addition to a blanket DCT (BDCT) scenario, we developed 7 scenarios to select cows for DCT based on SCC. The scenarios covered a range of possible approaches to select low-SCC cows for DCT, all based on cow-level SCC thresholds on the last milk recording before drying off. The incidence rate of clinical mastitis in the example herd varied from 11.6 to 14.5 cases of clinical mastitis per 10,000 cow-days at risk in the different scenarios, and the prevalence of subclinical mastitis varied from 38.8% in scenario 1 (BDCT) to 48.3% in scenario 8. Total antimicrobial usage for DCT and clinical mastitis treatment varied over the scenarios from 1.27 (scenario 8) to 3.15 animal daily dosages (BDCT), leading to a maximum reduction in antimicrobial usage of 60% for scenario 8 compared with BDCT. The total costs for each of the scenarios showed little variation, varying from €4,893 for scenario 5 to €5,383 for scenario 8. The effect of selective DCT compared with BDCT on udder health, antimicrobial usage, and economics is influenced by the SCC criteria used to select cows for DCT. Scenario 2 resulted in the lowest increases in clinical and subclinical mastitis compared with BDCT. The greatest reduction in antimicrobial usage was achieved under scenario 8. From an economic perspective, lowest costs were achieved with scenario 5. Drying off dairy cows with antimicrobials has an effect on udder health, antimicrobial usage, and economics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.