We present results from a study of the vibrational, structural, and electronic properties of C60 powder and thin films. Raman spectroscopy and diamond anvil cell have been used to study pressure dependence of the Raman active modes of C60 powder. The material undergoes structural phase transition between 9 and 15 GPa. Some of the Raman modes soften, while others harden with increasing pressure. Thin films of C60 and La-doped C60 have also been studied by using Raman scattering, x-ray diffraction, x-ray photoelectron spectroscopy and uv photoemission spectroscopy. Whereas the powder and La-doped C60 films exhibit fcc crystalline structure, the C60 film appears disordered. Further, we observe a significant difference in the electronic valence bands of the doped and undoped films.
Highly conducting thin films of C60 were deposited by thermal evaporation in high vacuum on single crystal silicon substrates. The microstructure of the films was characterized by using Atomic Force Microscopy, and laser Raman spectroscopy. The films were polymerized by uv irradiation. The dc electrical resistivities of the as-deposited and uv-polymerized films were measured as functions of temperature between 295 and 17K by the four-probe technique. We present results on the effects of uv-irradiation on the surface microstructure and the temperature dependence of the electrical resistivity of these films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.