There is wide agreement on the benefits of NBS for CF in terms of lowered disease severity, decreased burden of care, and reduced costs. Risks are mainly associated with disclosure of carrier status and diagnostic uncertainty. When starting a NBS programme for CF it is important to take precautions in order to minimise avoidable risks and maximise benefits. In Europe more than 25 screening programmes have been developed, with quite marked variation in protocol design. However, given the wide geographic, ethnic, and economic variations, complete harmonisation of protocols is not appropriate. There is little evidence to support the use of IRT alone as a second tier, without involving DNA mutation analysis. However, if IRT/DNA testing does not lead to the desired specificity/sensitivity ratio in a population, a screening programme based on IRT/IRT may be used. Sweat chloride concentration remains the gold standard for discriminating between NBS false and true positives, but age-related changes in sweat chloride should be taken into account. CF phenotypes associated with less severe disease often have intermediate or normal sweat chloride concentrations. Programmes should include arrangements for counselling and management of infants where the diagnosis is not clear-cut. All newborns identified by NBS should be managed according to internationally accepted guidelines. CF centre care and the availability of necessary medication are essential prerequisites before the introduction of NBS programmes. Clear explanation to families of the process of screening and of implications of normal and abnormal results is central to the success of CF NBS programmes. Effective communication is especially important when parents are told that their child is affected or is a carrier. When establishing a NBS programme for CF, attention should be given to ensuring timely and appropriate processing of results, to minimise potential stress for families.
Annually these programmes screen approximately 1,600,000 newborns for CF and over 400 affected infants are recognised. The findings of this survey will guide the development of European evidence based guidelines and may help new regions or nations in the development and implementation of NBS for cystic fibrosis.
Background Trichohepatoenteric syndrome (THES) is an autosomal recessive disorder characterised by life-threatening diarrhoea in infancy, immunodeficiency, liver disease, trichorrhexis nodosa, facial dysmorphism, hypopigmentation and cardiac defects. We attempted to characterise the phenotype and elucidate the molecular basis of THES. Methods Twelve patients with classical THES from 11 families had detailed phenotyping. Autozygosity mapping was undertaken in 8 patients from consanguineous families using 250k single nucleotide polymorphism (SNP) arrays and linked regions evaluated using microsatellite markers. Linkage was confirmed to one region from which candidate genes were analysed. The effect of mutations on protein production and/or localisation in hepatocytes and intestinal epithelial cells from affected patients was characterised by immunohistochemistry. Results Previously unrecognised platelet abnormalities (reduced platelet α-granules, unusual stimulated alpha granule content release, abnormal lipid inclusions, abnormal platelet canalicular system and reduced number of microtubules) were identified. The THES locus was mapped to 5q14.3 – 5q21.2. Sequencing of candidate genes demonstrated mutations in TTC37, which encodes the uncharacterised tetratricopeptide repeat protein, thespin. Bioinformatic analysis suggested thespin to be involved in protein-protein interactions or chaperone. Preliminary studies of enterocyte brush-border ion transporter proteins (NHE2, NHE3, Aquaporin 7, Na/I symporter and H / K ATPase) showed reduced expression or mislocalisation in all THES patients with different profiles for each. In contrast the basolateral localisation of Na/K ATPase was not altered. Conclusion THES is caused by mutations in TTC37. TTC37 mutations have a multisystem effect which may be due to abnormal stability and / or intracellular localisation of TTC37 target proteins.
The most common fatty acid oxidation disorder, medium chain acyl-CoA dehydrogenase deficiency (MCADD), has become the focal point for the adoption of tandem mass spectrometry to detect it and related inborn errors of metabolism. This article updates a human genome epidemiology review of MCADD published in 1999. The focus of this update is on epidemiologic parameters rather than mutations associated with MCADD. Currently available information from screening studies on the frequency of detection of MCADD in newborns, as well as the frequency of homozygotes for the common mutation in the ACADM gene, is summarized. In the United States, the average incidence of the disorder is from 1 in 15,000 to 1 in 20,000 births, with individual states reporting frequencies from 1 in 10,000 to 1 in 30,000 births. In addition, a systematic review was undertaken of the published literature on the frequency of mortality and developmental disabilities among children with MCADD, both in screened and unscreened cohorts. It seems that in the absence of newborn screening for MCADD, premature death or serious disability occurs in 20% to 25% of children with the disorder. Systematic collection and analysis of follow-up data are still needed to ascertain the frequencies of outcomes in screened cohorts.
Primary systemic carnitine deficiency or carnitine uptake defect (OMIM 212140) is a potentially lethal, autosomal recessive disorder characterized by progressive infantile-onset cardiomyopathy, weakness, and recurrent hypoglycemic hypoketotic encephalopathy, which is highly responsive to L-carnitine therapy. Molecular analysis of the SLC22A5 (OCTN2) gene, encoding the high-affinity carnitine transporter, was done in 11 affected individuals by direct nucleotide sequencing of polymerase chain reaction products from all 10 exons. Carnitine uptake (at Km of 5 microM) in cultured skin fibroblasts ranged from 1% to 20% of normal controls. Eleven mutations (delF23, N32S, and one 11-bp duplication in exon 1; R169W in exon 3; a donor splice mutation [IVS3+1 G > A] in intron 3; frameshift mutations in exons 5 and 6; Y401X in exon 7; T440M, T468R and S470F in exon 8) are described. There was no correlation between residual uptake and severity of clinical presentation, suggesting that the wide phenotypic variability is likely related to exogenous stressors exacerbating carnitine deficiency. Most importantly, strict compliance with carnitine from birth appears to prevent the phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.