ALS Gene Mutations in Apera Spica-Venti Confer Broad-Range Resistance to Herbicides
Several biotypes of wind bentgrass in Poland have been identified as being resistant to acetolactate synthase (ALS) inhibitors. We screened these weeds with chlorsulfuron and performed a whole-plant bioassay with a range of doses based on these four herbicides: chlorsulfuron, sulfosulfuron, propoxycarbazone-sodium and mesosulfuron-methyl + iodosulfuron-methyl-sodium mixture. Ten biotypes, diverse in their levels of resistance, were submitted for molecular tests. PCR amplification and sequencing of als domains demonstrated numerous single nucleotide polymorphisms. Nine biotypes showed non-synonymous substitutions in codon Pro197, changing it to Ser or Thr. Mutation in Pro197 conferred a high level of resistance to the tested herbicides. Analysis of four biotypes also revealed a substitution in the Ala122 codon, changing it to Val. In one biotype this substitution was not accompanied by Pro197 mutation and this biotype was resistant to chlorsulfuron and mesosulfuron + iodosulfuron, but not to sulfosulfuron or propoxycarbazone-sodium. Correspondence between mutations and levels of resistan ce to ALS inhibitors may support management of resistant weeds with the existing palette of herbicides.
Summary
Avena fatua of the family Poaceae is one of the most common and economically damaging grass weeds. Resistance to herbicides that inhibit acetyl‐coenzyme A carboxylase and acetolactate synthase activities has recently been detected in A. fatua. The resistance may be due to mutations in the herbicide targets and/or enhanced herbicide metabolism resulting from changes in gene expression, including in genes involved in detoxifying herbicide active ingredients. To analyse gene expression, stable housekeeping genes must be experimentally determined and used for data normalisation. In this study, A. fatua plants were treated with different herbicide types and plant materials were harvested at three time points following treatment. Six candidate reference genes (18S rRNA, ACT, EF1α, GAPDH, TBP, and TUB) were selected, sequenced and analysed by RT‐qPCR. The resulting data were assessed using four algorithms from the RefFinder software to determine gene expression stability. We identified TBP and GAPDH as the most stably expressed A. fatua reference genes following herbicide treatment.
Temperature strongly influences the growth of maize, particularly in the early growth stages. The exogenous application of some amino acids has been proven to have a positive effect on plant growth and development under stressful conditions. The objective of the study was to evaluate the response of maize that was grown under an optimal and stress (fluctuating) temperature to L-Arginine (L-Arg) and Glycine (Gly) application. In the study, it was assumed that the exogenously applied amino acids would alleviate the adverse effects of temperature stress on the maize height, as well as on the biomass of shoots and roots. Ten concentrations of each amino acid from 0.006 mM to 9.0 mM were tested under constant temperature conditions 20–22 °C/23–25 °C (night/day) an fluctuating stress of rising and dropping temperatures between 12–15 °C (night) and 30–38 °C (day). The amino acids were applied to the crop at growth stages V3–V4. In plants that were obtained from seeds pre-treated with L-Arg and Gly, the amino acids increased both the length of radicles and the number of lateral roots. A large discrepancy between the effects of the two amino acids was observed after foliar application. Under optimal thermal conditions, L-Arg increased the mass of shoots and roots by 55–59%. Under stress conditions, root mass was increased even by 100% when compared to the control plants. The best results were recorded at concentrations of 6 mM and 3 mM. Plants that were treated with Gly concentrations generally reached the height of untreated plants or less. It was shown that Gly applied at concentrations of 0.2 mM to 3 mM has a negative effect on the fresh mass of the crop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.