Magnetoelectric composite materials are promising candidates for highly sensitive magnetic-field sensors. However, the composites showing the highest reported magnetoelectric coefficients require the presence of external d.c. magnetic bias fields, which is detrimental to their use as sensitive high-resolution magnetic-field sensors. Here, we report magnetoelectric composite materials that instead rely on intrinsic magnetic fields arising from exchange bias in the device. Thin-film magnetoelectric two-two composites were fabricated by magnetron sputtering on silicon-cantilever substrates. The composites consist of piezoelectric AlN and multilayers with the sequence Ta/Cu/Mn(70)Ir(30)/Fe(50)Co(50) or Ta/Cu/Mn(70)Ir(30)/Fe(70.2)Co(7.8)Si(12)B(10) serving as the magnetostrictive component. The thickness of the ferromagnetic layers and angle dependency of the exchange bias field are used to adjust the shift of the magnetostriction curve in such a way that the maximum piezomagnetic coefficient occurs at zero magnetic bias field. These self-biased composites show high sensitivity to a.c. magnetic fields with a maximum magnetoelectric coefficient of 96 V cm(-1) Oe(-1) at mechanical resonance.
We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/, a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.
For the measurement of biomagnetic signals in the pico-and femtotesla regime superconducting interference devices (SQUIDs) are commonly used. Their major limitation comes from helium cooling which makes these sensors bulky and expensive. We show that MEMS sensors based on magnetoelectric (ME) composites could be capable as a replacement for biomagnetic measurements. Using surface micromachining processes a cantilever beam with a stack composed of SiO 2 /Ti/Pt/AlN/Cr/FeCoSiB was fabricated on a 150 mm Si (1 0 0) wafer. First measurements of a rectangular micro cantilever with a thickness of 4 μm and lateral dimensions of 0.2 mm × 1.12 mm showed a giant ME coefficient α ME = 1000 (V m −1 )/(A m −1 ) in resonance at 2.4 kHz. The resulting static ME coefficient is α ME = 14 (V m −1 )/(A m −1 ). In resonance operation a sensitivity of 780 V T −1 and noise levels as low as 100 pT Hz −1/2 have been reached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.