Titanium disilicide films were sputter deposited from a composite TiSi2.1 target on 〈111〉 bare silicon wafers both at room temperature and at 600 °C. The room temperature as-deposited films require a 900 °C sintering step to reduce their resistivity. On the other hand, the as-deposited 600 °C films are fully reacted, polycrystalline, have no oxygen contamination, large grain sizes, and are oxidation resistant. Further annealing of these films at 900 °C produces no changes in their crystal structure, composition, resistivity, or grain size.
We have demonstrated nanofabrication with commercialized cellulose acetate. Cellulose acetate is used for bulk nanofabrication and surface nanofabrication. In bulk nanofabrication, cellulose acetate reacts with an e-beam and permanent patterns are formed in it instead of being transferred to other substrates. We have studied the nano relief modulation performance of cellulose acetate before and after development. The depth of the nanopatterns is magnified after development, and is varied by exposing dosage and line width of the pattern. The thinnest 65 nm wide line is achieved in the bulk fabrication. We also demonstrate a binary phase Fresnel lens array which is directly patterned in a cellulose acetate sheet. Because of its unique mechanical and optical properties, cellulose is a good candidate for a template material for soft imprinting lithography. In the surface nanofabrication, cellulose acetate thin film spin-coated on silicon wafers is employed as a new resist for e-beam lithography. We achieved 50 nm lines with 100 nm pitches, dots 50 nm in diameter, and single lines with the smallest width of 20 nm. As a new resist of e-beam lithography, cellulose acetate has high resolution comparable with conventional resists, while having several advantages such as low cost, long stock time and less harmfulness to human health.
We have investigated the silicide‐silicon interface during the oxidation of titanium silicide on polysilicon. We find that during oxidation the polysilicon layer under the silicide is consumed inhomogeneously and that at the same time the titanium silicide moves into the polysilicon layer. Oxidations were carried out both in wet and dry
O2
with similar results. This nonuniform consumption of the polysilicon layer appears to be related to the condition of the silicide‐silicon interface prior to the oxidation step. This effect can result in the reduction of the dielectric breakdown strength of underlying gate oxide in titanium silicide/polysilicon/oxide/Si structures.
We provide a 'growing' method for fabricating a microlens array with lateral size of a few microns or less. Instead of using complicated etching techniques, the method forms a spherical profile of the lens using conformal chemical vapor deposition. We have fabricated two lens arrays. One has a pitch of 1200 nm, a circular aperture 1000 nm in diameter and a sag height of 130 nm. The other array has a pitch of 600 nm, and a square aperture of 600 nm × 600 nm, with a fill factor close to 100%. The maximum profile deviation between the fabricated lens and an ideal sphere is about 11% and 14% respectively. The calculation indicates that the curvature difference of the profile of the square lens in the orthogonal and diagonal direction is 5.5%. The roughness of the lens is measured as approximately 6 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.