Fusarium oxysporum is an ascomycete facultative fungus which generally affects to plants. However, it is recently known as a serious emerging opportunistic pathogen of human and other animals. F. oxysporum shows broad resistance to commonly used antifungal agents and therefore development of alternative therapeutic agents is required. In this study, we investigated the antifungal efficacy of plant based natural lawsone against pathogenic F. oxysporum. Antifungal susceptibility test determined the concentration dependent growth inhibition of lawsone against F. oxysporum with minimum inhibitory concentration (MIC) at 100μg/mL. Ultra-structural analysis indicates the prominent damage on cell wall of the mycelium after lawsone treatment, and suggests that it could increase the membrane permeability and disintegration of cells leading to cellular death. Propidium iodide (PI) uptake assay results showed the higher level of cell death in lawsone treated F. oxysporum which further confirms the loss of plasma membrane integrity. Also, detection of reactive oxygen species (ROS) using DCFH-DA has clearly indicated that lawsone (100μg/mL) can induce the ROS level in the filaments of F. oxysporum. MTT assay results showed the loss of viability and germination capacity of F. oxysporum spores by lawsone in concentration dependent manner. Moreover, lawsone treatment induced the mRNA expression of two autophagy related genes (ATG1 and ATG8) indicating that lawsone may activate the autophagy related pathways in F. oxysporum due to the oxidative stress generated by ROS. F. oxysporum infected zebrafish has recovered after lawsone therapy as a topical treatment suggesting that lawsone is a potential natural antifusariosis agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.