While it has been known for some time that the c-Myc protein binds to random DNA sequences, no sequence-specific binding activity has been detected. At its carboxyl terminus, c-Myc contains a basic—helix-loop-helix (bHLH) motif, which is important for dimerization and specific DNA binding, as demonstrated for other bHLH protein family members. Of those studied, most bHLH proteins bind to sites that contain a CA- -TG consensus. In this study, the technique of selected and amplified binding-sequence (SAAB) imprinting was used to identify a DNA sequence that was recognized by c-Myc. A purified carboxyl-terminal fragment of human c-Myc that contained the bHLH domain bound in vitro in a sequence-specific manner to the sequence, CACGTG. These results suggest that some of the biological functions of Myc family proteins are accomplished by sequence-specific DNA binding that is mediated by the carboxyl-terminal region of the protein.
While the p34cdc2 kinase is considered to be a critical regulator of mitosis, its function has not yet been directly linked to one of the key events during the onset of mitosis: nuclear envelope breakdown. Here we show that a major structural protein of the nuclear envelope, lamin B2, is phosphorylated by p34cdc2. Results from two‐dimensional phosphopeptide mapping experiments demonstrate that the p34cdc2‐specific phosphopeptides represent both mitotic and interphase specific phosphorylations of lamin B2 and include the major interphase phosphorylation site. In mitotic cells we detected two distinct forms of lamin B2 which differ in electrophoretic mobility and in degree of phosphorylation. The phosphorylation pattern of lamin B2 generated in vitro by p34cdc2 was more closely related to the less phosphorylated mitotic lamin B2, suggesting that another kinase(s) in addition to p34cdc2 is involved in generating the mitotic phosphorylation pattern. In addition, we show that treatment of interphase cells with okadaic acid, a potent phosphatase inhibitor, leads to the acquisition of mitosis‐specific phosphopeptides and can reversibly increase the detergent‐solubility of lamin B2. However, the M‐phase‐like phosphorylation of lamin B2 in itself is not sufficient to induce its disassembly from the nuclear lamina suggesting that an additional event(s) besides phosphorylation is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.