The effects of dietary protein content and feeding level on the utilization of metabolizable energy (ME) and on the rates of gain, protein and fat deposition have been studied in seventy-two Iberian pigs growing from 15 to 50 kg body weight (BW) by means of comparative slaughter experiments. The animals were fed on six diets providing 223, 192, 175, 156, 129 and 101 g crude ideal protein (N £ 6·25; CP)/kg DM and 14·64, 14·14, 14·37, 14·80, 15·36 and 15·53 MJ ME/kg DM respectively. Each diet was offered at three levels of feeding: 0·60, 0·80 and 0·95 £ ad libitum intake. Protein deposition (PD) increased significantly (P,0·01) with each decrease in dietary CP content and reached a maximum value (74·0 g) when the diet providing 129 g CP/kg DM (6·86 g digestible ideal protein/MJ ME) was offered at the highest feeding level. This feeding regimen resulted in average values for live-weight gain and retained energy (RE) of 559 g/d and 10·9 MJ/d respectively. RE increased significantly (P, 0·001) from 480 to 626 kJ/kg BW 0·75 with each decrease in dietary CP content from 192 to 129 g/ kg DM. Raising the level of feed intake led to significant linear increases in PD and RE irrespective of the diet fed (P,0·001). When diets approaching an adequate supply of CP were given, the net efficiency of use of ME for growth (k w ) and the maintenance energy requirements were 58·2 % and 422 kJ/kg BW 0·75 per d respectively.
Nutritional requirements of the Iberian pig, a slow-growing, obese porcine breed, are not well defined and seem to differ from those of conventional or high-performing pigs. The effects of the dietary protein content and the feeding level on the utilisation of metabolisable energy (ME) and the rates of gain, protein, and fat deposition were studied with 81 Iberian castrates growing from 50 to 100 kg body weight (BW) by using the comparative slaughter technique. The animals were fed 4 diets providing 145, 120, 95, and 70 g ideal crude protein (CP) per kg dry matter (DM), and containing 13. 94, 14.29, 14.56, and 14.83 MJ ME per kg DM, respectively. Three levels of feeding were evaluated: 0.60, 0.80, and 0.95 £ ad libitum intake. Growth rate increased (linear and quadratic, P , 0.001) as the dietary ideal CP content decreased. It also increased with the feeding level (linear, P , 0.001; quadratic, P , 0.05). Gain:feed and gain:ME intake improved by decreasing the ideal CP content in the diet (linear, P , 0.001 and P , 0.05, respectively; quadratic P , 0.001 for both variables). Increasing the feeding level improved linearly gain:feed and gain:ME intake ( P , 0.001). Protein deposition (PD):ME intake ranged between 1.23 and 1.44 g/MJ, and it showed a tendency to reach the maximum value when the diet providing 95 g ideal CP per kg DM was fed (quadratic, P ¼ 0.078). When this diet was offered at 0.95 £ ad libitum, PD reached a maximum value of 71 g/day. This dietary treatment resulted in average values for average daily gain and retained energy (RE) of 854 g/day and 21.4 MJ/day, respectively. The average rate of gain was 19.93 g/MJ increase in ME intake, equivalent to an energy cost of 50.2 kJ ME per g gain, irrespective of the dietary ideal CP content. Also, the overall marginal efficiency of protein deposition (DPD:DME; g/MJ) was 1.34. Increasing the feeding level led to increases in PD (linear, P , 0.001) and RE (linear, P , 0.001; quadratic, P , 0.01) irrespective of the dietary ideal CP concentrations. Between 50 and 100 kg BW, the chemical composition of 1 kg gain averaged 78, 592, 28.7, and 284 g for CP, fat, ash, and water respectively. The net efficiency of use of ME for growth ( k g ) and the maintenance energy requirements were 0.606 and 396 kJ/kg BW 0.75 per day, respectively. The results support earlier findings that the genotype has marked effects on protein and energy metabolism of growing pigs and underline important compositional differences of the Iberian pig compared with conventional or modern porcine genotypes.
A total of 251 growing-finishing Iberian (IB) pigs, 32 of which were suckling piglets, were used in 5 separate sets of trials. The comparative slaughter procedure was used to determine nutrient and energy retention at several stages of growth from birth to 150 kg BW. A factorial arrangement was used within each set of trials, involving several concentrations of ideal protein in the diets as 1 factor and 2 or 3 levels of feed intake as the other. The main objective of these studies was to derive the optimal protein-to-energy ratio in the diet to allow for the expression of maximum protein deposition rates. The effect of feed restriction on growth performance, protein deposition, and fat deposition was also assessed. According to allometric equations, empty BW (EBW) was related to whole body components or total chemical constituents of empty body mass (P < 0.001). For pigs receiving solid feed, highly statistically significant multiple regression equations were constructed, which derived nutrient (g/kg) or energy (MJ/kg) composition as a function of EBW, dietary protein-to-energy ratio, and level of feeding (P < 0.001). In pigs offered adequate protein-to-energy diets, ADG at each stage of production was predicted as a function of the average BW and feeding level (P < 0.001). It was observed that the estimates of ME required for maintenance and net efficiency of utilization of ME for growth change were within rather narrow ranges throughout the growth stages studied. Preferred values (413 kJ/kg BW(0.75) × d(-1) and 0.593 for ME(m) and k(g), respectively) were obtained by regressing total energy retention (kJ/kg BW(0.75) × d(-1)) against ME intake (kJ/kg BW(0.75) × d(-1)). A multiple-regression approach revealed that in the IB pig, ME costs for protein deposition and fat deposition reach 60 and 62 kJ/g, which is considerably greater than in conventional or lean pig genotypes. In the IB pig, the maximum daily rate of protein deposition (PD(max), g) seemed to follow a linear-plateau shape with a breaking point at 32.5 kg BW, beyond which PD(max) remained at an average rate of 75 g × d(-1). The marginal efficiency of body protein deposition was estimated at each growth stage. In pigs fed on optimal or suboptimal protein-to-energy diets, the relationship between PD and ME intake declined, following a curvilinear pattern with increasing BW; thus, implying relative increases in lipid gain as BW increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.