The aim of this work is to improve the modelling of ion populations in higher density, lower temperature astrophysical plasmas, of the type commonly found in lower solar and stellar atmospheres. Ion population models for these regions frequently employ the coronal approximation, which assumes conditions more suitable to the upper solar atmosphere, where high temperatures and lower densities prevail. These assumptions include all ion charge-states being in the ground state, and steady-state equilibrium where there is sufficient time for ionisation and recombination to take place. Using the coronal approximation for modelling the solar transition region gives theoretical lines intensities for the Li-like and Na-like isoelectronic sequences which can be factors of 2-5 times lower than observed. The works of Burgess & Summers (1969) and Nussbaumer & Storey (1975) showed the important part ions in excited levels play when included in the modelling. As density increases metastable levels become populated and ionisation rates increase, whereas dielectronic recombination through the highly-excited levels becomes suppressed. Photo-ionisation was also shown by Nussbaumer & Storey to have an effect on the charge-state distribution of carbon in these regions. Their models, however, used approximations for the atomic rates to determine the ion balance. Presented here is the first stage in updating these earlier models of carbon by using rates from up-to-date atomic calculations and more recent photo-ionising radiances for the quiet Sun. Where such atomic rates are not readily available, in the case of electron-impact direct ionisation and excitation-auto-ionisation, new calculations have been made using the Flexible Atomic Code and Autostructure, and compared to theoretical and experimental studies. The effects each atomic process has on the ion populations as density changes is demonstrated, and final results from the modelling are compared to the earlier works. Lastly, the new results for ion populations are used to predict line intensities for the solar transition region in the quiet Sun, and these are compared with predictions from coronal-approximation modelling and with observations. Significant improvements in the predicted line intensities are seen in comparison to those obtained from zero-density modelling of carbon.
Extensions have been made recently to the coronal approximation for the purpose of modelling line emission from carbon and oxygen in the lower solar atmosphere. The same modelling is used here for other elements routinely observed in the solar transition region: N, Ne, Mg, Si and S. The modelling includes the effects of higher densities suppressing dielectronic recombination and populating long-lived, metastable levels; the presence of metastable levels typically causes effective ionisation rates to increase and recombination rates to decrease. Processes induced by the radiation field, namely photo-ionisation and photo-excitation, have been included, along with charge transfer, which occurs when electrons are exchanged during atom-ion and ion-ion collisions. The resulting ion balances are shown, and indicate significant changes compared to the frequently-employed coronal approximation. The effect on level populations within ions caused by photo-excitation is also assessed. To give an illustration of how line emission could be altered by these processes, selected line contribution functions are presented at the end.
To predict line emission in the solar atmosphere requires models which are fundamentally different depending on whether the emission is from the chromosphere or the corona. At some point between the two regions, there must be a change between the two modelling regimes. Recent extensions to the coronal modelling for carbon and oxygen lines in the solar transition region have shown improvements in the emission of singly- and doubly-charged ions, along with Li-like ions. However, discrepancies still remain, particularly for singly-charged ions and intercombination lines. The aim of this work is to explore additional atomic processes that could further alter the charge state distribution and the level populations within ions, in order to resolve some of the discrepancies. To this end, excitation and ionisation caused by both the radiation field and by atom-ion collisions have been included, along with recombination through charge transfer. The modelling is carried out using conditions which would be present in the quiet Sun, which allows an assessment of the part atomic processes play in changing coronal modelling, separately from dynamic and transient events taking place in the plasma. The effect the processes have on the fractional ion populations are presented, as well as the change in level populations brought about by the new excitation mechanisms. Contribution functions of selected lines from low charge states are also shown, to demonstrate the extent to which line emission in the lower atmosphere could be affected by the new modelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.