A method is described to obtain a new type of microcapsules for immobilization of enzymes or living cells. The wall of these capsules consists of several layers of poly(ethy1eneimine) and poly(acry1ic acid). The idea is that diverging properties of the whole assembly can be better controlled when the membrane is built up by several consecutive steps, each being optimized with respect to a special property, for example, permeability or mechanical strength. The encapsulation of acidic phosphatase and the cleavage of p-nitrophenyl phosphate was used as a model system. The charged capsules were characterized by their enzymatic activity, as a function of membrane composition (number and sequence of layers) and storing time. The permeability for the substrate and the retaining ability for the enzyme were also measured.
Optimising microencapsulation technology towards the effective clinical transplantation has created the need for highly biocompatible alginates. Therefore, in this study the biocompatibility of different beads prepared from alginates with varying average molecular weight was examined. In some experiments the beads were covered with a multilayer membrane surrounded by an alginate layer. First of all, we found that beads made of a lower weight average alginate elicted a much stronger fibrotic response compared to beads made of a higher weight average alginate (LV-alginate > MV-alginate). The results were confirmed by the observation that the extent of tissue fibrosis was significantly increased in multilayer capsules made of an alginate with a lower weight average (core and surface LV-alginate, Mw 0.7-1 * 10(6) g/mol, viscosity of a 0.1% solution 1-2.5 mPa s(-1)) compared to multilayer capsules made of an alginate with a higher weight average (core and surface MV-alginate; Mw 1.2-1.3 * 10(6) g/mol, viscosity of a 0.1% solution 5-7 mPa s(-1)). It should be stressed, that the pro-fibrotic effect of the LV-alginate alginate in the core was only partially reversed by a MV-alginate on the surface of the multilayer capsules. On the basis of the raised data, it can be assumed that the molecular weight average of the alginates have an decisive effect on the biocompatibility. Therefore, it seems to be recommendable to reduce the low molecular weight fractions of the alginate during the purification process to improve the biocompatibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.