Marine ecosystem of the Lakshadweep archipelago is unique and known to have a very high degree of biodiversity with a number of endemic flora and fauna. The present study focuses to isolate the endosymbiotic microorganism from sponges and its effectiveness against marine ornamental fish pathogens. The sponges were collected from Agatti island of Lakshadweep archipelago and identified as Clathria procera, Sigmadocia fibulata and Dysidea granulosa. In which, 15 different types of bacteria were isolated and screened against marine ornamental fish pathogens (A. hydrophila, Vibrio alginolyticus, V. harveyii, V. parahaemolyticus and Pseudomonas fluorescens). The strain S25 was found as potential bacteria based on their antimicrobial activity against the fish pathogens. Molecular identification of the potential strain (S25) of the 16S rRNA gene showed 99% identity with Acinetobacter sp. The sequenced 16 s rRNA gene with 1,081 bp in length was submitted in NCBI Genbank and Accession was obtained (GenBank Accession number HM004071). The strain exhibited high similarity (99%) with the 16S rRNA gene of Acinetobacter calcoaceticus from GenBank database. Crude extract obtained with acetone and ethyl acetate from extracellular products of S25 showed significant antimicrobial activity by disc diffusion assay using 1,500 μg/ml of crude extract. Extracellular metobolite of A. calcoaceticus was extracted by shake flask method and the crude extract was partially purified by thin layer chromatography. Partially purified crude extract showed significant inhibition zone of antimicrobial activity (A. hydrophila, V. alginolyticus, V. parahaemolyticus) and less similar activity against V. harveyii and P. fluorescens. This is the first report on A. calcoaceticus isolated from sponges of Lakshadweep archipelago and the studies are underway to characterize and purify the antimicrobial compounds of the potential bacteria.
The present study evaluated the patterns of morphometric and genetic variation using RAPD-PCR techniques for the first time on three species of Garra, viz. G. mullya, G. kalakadensis and G. gotyla stenorhynchus, collected from various river basins of South-India. The results of morphological analysis revealed that G. mullya and G. kalakadensis hold many similar characters compared to the other congener, G. gotyla stenorhynchus. However, the G. gotyla stenorhynchus fish species exhibited distinct variation in the morphological characters such as snout length, pre-nasal length, inter-nasal width, gap width, lower jaw to isthmus, head depth at pupil, dorsal fin length and disc width from the other two species of Garra. However, certain morphometric characters overlapped. Hence the RAPD finger printing was used to assess the levels of genetic variation in Garra spp. using RAPD-PCR technique. A total of 72 reliable fragments were detected using 10 Operon primers, ranging from 2600 molecular weight to 3100. The shared RAPD fragments found in both G. mullya and G. kalakadensis with fixed frequencies were observed with all the investigated primers, implying their genetically closer relationship. However, the similarity index observed for G. gotyla stenorhynchus was less with the other two species specifying a genetically distant link. The present investigation thus contribute to the knowledge on morphological and genetic variation in these three Garra species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.