We report the results of structural, chemical, and extreme ultraviolet (EUV) characterization of Si/Mo multilayers grown by sputtering and by UHV evaporation. This study includes mirrors designed for normal incidence with peak reflectivities Rpeak between 22 and 24 nm, and 45° mirrors having Rpeak between 16 and 19 nm. The deposition conditions were varied to produce multilayers with a wide range of interface morphologies. A variety of techniques were used to determine the structure and composition of the multilayers, including x-ray diffraction, transmission electron microscopy, Rutherford backscattering spectroscopy, and Auger depth profiling. All of the mirrors have amorphous Si layers and polycrystalline Mo layers with thin amorphous alloy interlayers. We obtain good fits to the low-angle x-ray diffraction data only when these interlayers are taken into account. The best sputter-deposited mirrors were made at the lowest Ar pressure studied, 3 mTorr. The best evaporated mirrors were produced at a substrate temperature of 200 °C. The EUV reflectivity as a function of wavelength was measured using synchrotron radiation. Both the multilayer structure and surface contamination significantly affect the EUV reflectivity, and must be considered to obtain good fits to the reflectivity curves. The best 45° mirror had a peak reflectivity of 53% at 18.6 nm for 100% S-polarized light, and the best normal-incidence mirror had a peak reflectivity of 33% at 23.6 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.