The objective of this pilot study was to examine in vivo the potential of recombinant human osteogenic protein-1 (rhOP-1, also called bone morphogenetic protein-7, BMP-7) for treatment of subchondral lesions by induction of new hyaline cartilage formation. Subchondral left knee defects in 17 mature goats were treated with fresh coagulated blood mixed with (1) rhOP-1 combined with collagen (OP-1 device, 400 microgram/mL); (2) rhOP-1 alone (OP-1 peptide, 200 microgram/mL); (3) OP-1 device with small particles of autologous ear perichondrium; (4) OP-1 peptide with small particles of autologous ear perichondrium; or (5) autologous ear perichondrium alone (controls). rhOP-1 was combined with either collagen (OP-1 device) or not (OP-1 peptide). The defects were closed with a periosteal flap. The formation of cartilage tissue was studied by histologic and biochemical evaluation at 1, 2, and 4 months after implantation. One and 2 months after implantation there were no obvious differences between control and rhOP-1-treated defects. Four months after implantation, only one out of three controls (without rhOP-1) showed beginning signs of cartilage formation while all four rhOP-1-treated defects were completely or partly filled with cartilage. A significant linear relationship was found between rhOP-1 concentration and the total amount of aggrecan in the defects. These results suggest that implantation of rhOP-1 promotes cartilage formation in subchondral defects in goats at 4 months after implantation. Therefore, rhOP-1 could be a novel factor for regeneration of cartilage in articular cartilage defects.
The objective of this study was to examine in vitro the influence of recombinant human osteogenic protein-1 [rhOP-1, or bone morphogenetic protein-7 (BMP-7)] on cartilage formation by human and goat perichondrium tissue containing progenitor cells with chondrogenic potential. Fragments of outer ear perichondrium tissue were embedded in clotting autologous blood to which rhOP-1 had been added or not added (controls), and the resulting explant was cultured for 3 weeks without further addition of rhOP-1. Cartilage formation was monitored biochemically by measuring [35S]-sulphate incorporation into proteoglycans and histologically by monitoring the presence of metachromatic matrix with cells in nests. The presence of rhOP-1 in the explant at the beginning of culture stimulated [35S]-sulphate incorporation into proteoglycans in a dose-dependent manner after 3 weeks of culture. Maximal stimulation was reached at 40 microg/mL (human explants: +148%; goat explants: +116%). Histology revealed that explants treated with 20-200 microg/mL of rhOP-1, but not untreated control explants, contained areas of metachromatic-staining matrix with chondrocytes in cell nests. It was concluded that rhOP-1 stimulates differentiation of cartilage from perichondrium tissue. The direct actions of rhOP-1 on perichondrium cells in the stimulation of chondrocytic differentiation and production of cartilage matrix in vitro provides a cellular mechanism for the induction of cartilage formation by rhOP-1 in vivo. Thus rhOP-1 may promote early steps in the cascade of events leading to cartilage formation and could prove to be an interesting factor in the regeneration of cartilage in articular cartilage defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.