In this paper we present a new method for the characterization of the interface between the transparent conductive oxide (TCO) and the p doped amorphous silicon carbide layer in solar cells. The method is based on electrical capacitance measurements versus frequency in the temperature range: 20K-200K. We use Schottky diode structures (TCO-p-i-Ag) containing the p-i structure actually present in solar cells. Analysis of capacitance at different frequencies allows one to calculate an“activation energy”. Activation energy, temperature, position and shape of the capacitance step can be related to the density of states in the p type material by a model here presented. The effects of the p layer thickness and of the carbon content are investigated. A large increase of activation energy at short thickness is found, which can be related to interface damage, increasing in material with high carbon content. The technique shows an high spatial resolution and has the advantage to investigate the material as grown in the actual device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.