Sensor networks are handicapped by limited resources in the form of energy, processing, and memory. This paper proposes a new multi-hop energy efficient protocol, namely a routing algorithm using the ring-zone (RARZ) model. The protocol is lightweight, takes routing decisions based on the remaining energy of nodes, and performs location-based routing without the need for the nodes to know their respective positions. The protocol partitions the network into concentric rings around the base station. Each node assigns itself to a particular ring, known by a ringID. Multi-hop routing is performed and nodes within inner rings carry data for the outer rings towards the base station. Simulation results show that RARZ outperforms the address-light integrated MAC routing protocol (AIMRP), ad hoc on-demand distance vector (AODV) and Flooding in terms of end-to-end delay, average hop count, and energy consumption.
This paper presents an energy-efficient technique to handle redundant traffic (EEHRT) in the zone-based routing for wireless sensor networks. In this technique, multihop routing is performed based on the remaining energy of the nodes. Afterwards, it performs position-based routing without the need for the nodes to know their respective position. The main objective of this paper is to handle the redundant packets generated in zone-based routing using short beacon messages. Nodes of lower zones route the data of the higher zone to base station (BS) with a minimum number of hops and utilize only those nodes on the path which are energy efficient and located closer to BS. Moreover, the source node is acknowledged by the relaying node using a wireless broadcast advantage (WBA) without sending any special ACK packet to the sender, which reduces the control overhead in the routing process. The EEHRT technique improves the routing against RARZ by ensuring only one copy of the packet is propagated at each hop along the routing path to BS. Simulation results show that EEHRT achieved 28% improvement in energy efficiency, 10% and 25% improvements in data throughput against total and distinct packet reception at BS respectively, 35% increase in overall network lifetime, and 100% reduction in redundant packets generation and propagation in the network against RARZ routing.
Wireless sensor networks (WSNs) deployed in harsh and unfavorable environments become inoperable because of the failure of multiple sensor nodes. This results into the division of WSNs into small disjoint networks and causes stoppage of the transmission to the sink node. Furthermore, the internodal collaboration among sensor nodes also gets disturbed. Internodal connectivity is essential for the usefulness of WSNs. The arrangement of this connectivity could be setup at the time of network startup. If multiple sensor nodes fail, the tasks assigned to those nodes cannot be performed; hence, the objective of such WSNs will be compromised. Recently, different techniques for repositioning of sensor nodes to recover the connectivity have been proposed. Although capable to restore connectivity, these techniques do not focus on the coverage loss. The objective of this research is to provide a solution for both coverage and connectivity via an integrated approach. A novel technique to reposition neighbouring nodes for multinode failure is introduced. In this technique, neighbouring nodes of the failed nodes relocate themselves one by one and come back to their original location after some allocated time. Hence, it restores both prefailure connectivity and coverage. The simulations show our proposed technique outperforms other baseline techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.