Diabetic Retinopathy (DR) is an ophthalmic disease that damages retinal blood vessels. DR causes impaired vision and may even lead to blindness if it is not diagnosed in early stages. DR has five stages or classes, namely normal, mild, moderate, severe and PDR (Proliferative Diabetic Retinopathy). Normally, highly trained experts examine the colored fundus images to diagnose this fatal disease. This manual diagnosis of this condition (by clinicians) is tedious and error-prone. Therefore, various computer vision-based techniques have been proposed to automatically detect DR and its different stages from retina images. However, these methods are unable to encode the underlying complicated features and can only classify DR's different stages with very low accuracy particularly, for the early stages. In this research, we used the publicly available Kaggle dataset of retina images to train an ensemble of five deep Convolution Neural Network (CNN) models (Resnet50, Inceptionv3, Xception, Dense121, Dense169) to encode the rich features and improve the classification for different stages of DR. The experimental results show that the proposed model detects all the stages of DR unlike the current methods and performs better compared to state-of-the-art methods on the same Kaggle dataset.INDEX TERMS CNN, diabetic retinopathy, deep learning, ensemble model, fundus images, medical image analysis.
Sensor networks are handicapped by limited resources in the form of energy, processing, and memory. This paper proposes a new multi-hop energy efficient protocol, namely a routing algorithm using the ring-zone (RARZ) model. The protocol is lightweight, takes routing decisions based on the remaining energy of nodes, and performs location-based routing without the need for the nodes to know their respective positions. The protocol partitions the network into concentric rings around the base station. Each node assigns itself to a particular ring, known by a ringID. Multi-hop routing is performed and nodes within inner rings carry data for the outer rings towards the base station. Simulation results show that RARZ outperforms the address-light integrated MAC routing protocol (AIMRP), ad hoc on-demand distance vector (AODV) and Flooding in terms of end-to-end delay, average hop count, and energy consumption.
This paper presents an in-depth study and analysis of offloading strategies for lightweight user mobile edge computing tasks using a machine learning approach. Firstly, a scheme for multiuser frequency division multiplexing approach in mobile edge computing offloading is proposed, and a mixed-integer nonlinear optimization model for energy consumption minimization is developed. Then, based on the analysis of the concave-convex properties of this optimization model, this paper uses variable relaxation and nonconvex optimization theory to transform the problem into a convex optimization problem. Subsequently, two optimization algorithms are designed: for the relaxation optimization problem, an iterative optimization algorithm based on the Lagrange dual method is designed; based on the branch-and-bound integer programming method, the iterative optimization algorithm is used as the basic algorithm for each step of the operation, and a global optimization algorithm is designed for transmitting power allocation, computational offloading strategy, dynamic adjustment of local computing power, and receiving energy channel selection strategy. Finally, the simulation results verify that the scheduling strategy of the frequency division technique proposed in this paper has good energy consumption minimization performance in mobile edge computation offloading. Our model is highly efficient and has a high degree of accuracy. The anomaly detection method based on a decision tree combined with deep learning proposed in this paper, unlike traditional IoT attack detection methods, overcomes the drawbacks of rule-based security detection methods and enables them to adapt to both established and unknown hostile environments. Experimental results show that the attack detection system based on the model achieves good detection results in the detection of multiple attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.