In mammals, the two enzymes in the trans-sulfuration pathway, cystathionine -synthase (CBS) and cystathionine ␥-lyase (CSE), are believed to be chiefly responsible for hydrogen sulfide (H 2 S) biogenesis. In this study, we report a detailed kinetic analysis of the human and yeast CBS-catalyzed reactions that result in H 2 S generation. CBS from both organisms shows a marked preference for H 2 S generation by -replacement of cysteine by homocysteine. The alternative H 2 S-generating reactions, i.e. -elimination of cysteine to generate serine or condensation of 2 mol of cysteine to generate lanthionine, are quantitatively less significant. The kinetic data were employed to simulate the turnover numbers of the various CBS-catalyzed reactions at physiologically relevant substrate concentrations. At equimolar concentrations of CBS and CSE, the simulations predict that H 2 S production by CBS would account for ϳ25-70% of the total H 2 S generated via the trans-sulfuration pathway depending on the extent of allosteric activation of CBS by S-adenosylmethionine. The relative contribution of CBS to H 2 S genesis is expected to decrease under hyperhomocysteinemic conditions. CBS is predicted to be virtually the sole source of lanthionine, and CSE, but not CBS, efficiently cleaves lanthionine. The insensitivity of the CBS-catalyzed H 2 S-generating reactions to the grade of hyperhomocysteinemia is in stark contrast to the responsiveness of CSE and suggests a previously unrecognized role for CSE in intracellular homocysteine management. Finally, our studies reveal that the profligacy of the trans-sulfuration pathway results not only in a multiplicity of H 2 S-yielding reactions but also yields novel thioether metabolites, thus increasing the complexity of the sulfur metabolome.
Highlights Alcohol solutions and WHO alcohol-based liquid sanitizer formulations have demonstrated efficacy against the COVID-19 associated SARS-CoV-2 virus in previous publications. Two formulated alcohol-based hand sanitizers, a gel and a foam each containing 70% ethanol, yielded complete reduction of SARS-CoV-2, with >3 log 10 reductions, in suspension testing with a 30 second contact time. Further research is warranted on the efficacy of alcohol-based hand sanitizers against coronaviruses on the hands and understanding the impacts of hand hygiene on transmission of COVID-19.
BackgroundAlcohol-based hand rubs (ABHR) range in alcohol concentration from 60-95% and are available in a variety of delivery formats, such as rinses, gels, and foams. Recent studies suggest that some ABHR foams dry too slowly, thereby encouraging the use of inadequate volumes. This study investigates the influence of product volume, delivery format, and alcohol concentration on dry-time and antimicrobial efficacy of ABHR foams, gels and rinses.MethodsABHR dry-times were measured using volunteers to determine the influences of product volume, delivery format, and alcohol concentration. ABHR efficacies were evaluated according to the European Standard for Hygienic Hand Disinfection (EN 1500) using 3-mL application volumes rubbed for 30 s, and additionally, using volumes of the products determined to rub dry in 30 s.ResultsVolumes of six ABHR determined to rub dry in 30 s ranged from 1.7 mL to 2.1 mL, and the rate of drying varied significantly between products. ABHR dry-times increased linearly with application volume and decreased linearly with increasing alcohol concentration, but were not significantly influenced by product format. An ABHR foam (70% EtOH), rinse (80% EtOH), and gel (90% EtOH) each met EN 1500 efficacy requirements when tested at a volume of 3 mL, but failed when tested at volumes that dried in 30 s.ConclusionsApplication volume is the primary driver of ABHR dry-time and efficacy, whereas delivery format does not significantly influence either. Although products with greater alcohol concentration dry more quickly, volumes required to meet EN 1500 can take longer than 30 s to dry, even when alcohol concentration is as high as 90%. Future studies are needed to better understand application volumes actually used by healthcare workers in practice, and to understand the clinical efficacy of ABHR at such volumes.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2334-14-511) contains supplementary material, which is available to authorized users.
BackgroundThe World Health Organization has called for the development of improved methodologies to evaluate alcohol-based handrub (ABHR) efficacy, including evaluation at “short application times and volumes that reflect actual use in healthcare facilities”. The objective of this study was to investigate variables influencing ABHR efficacy, under test conditions reflective of clinical use.MethodsThe test product (60% V/V 2-propanol) was evaluated according to a modified EN 1500 methodology, where application volumes of 1 mL, 2 mL, and 3 mL were rubbed until dry. Statistical analyses were performed to investigate the relative influences of product volume, hand size, and product dry-time on efficacy, and hand size and hand contamination on product dry-time.ResultsMean log10 reduction factors (SD) were 1.99 (0.66), 2.96 (0.84) and 3.28 (0.96); and mean dry-times (SD) were 24 s (7 s), 50 s (14 s), and 67 s (20 s) at application volumes of 1 mL, 2 mL, and 3 mL, respectively (p ≤ 0.030). When data were examined at the individual volunteer level, there was a statistically significant correlation between dry-time and log reduction factor (p < 0.0001), independent of application volume. There was also a statistically significant correlation between hand surface area and dry-times (p = 0.047), but no correlation between hand surface area and efficacy (p = 0.698).ConclusionsWhen keeping other variables such as alcohol type and concentration constant, product dry-time appears to be the primary driver of ABHR efficacy suggesting that dosing should be customized to each individual and focus on achieving a product dry-time delivering adequate efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.