Hydrogen sulfide (H 2 S), a novel endogenous gaseous bioactive substance, has recently been implicated in the regulation of cardiovascular and neuronal functions. However, its role in the control of renal function is unknown. In the present study, incubation of renal tissue homogenates with L-cysteine (L-Cys) (as a substrate) produced H 2 S in a concentration-dependent manner. This H 2 S production was completely abolished by inhibition of both cystathionine -synthetase (CBS) and cystathionine ␥-lyase (CGL), two major enzymes for the production of H 2 S, using amino-oxyacetic acid (AOAA), an inhibitor of CBS, and propargylglycine (PPG), an inhibitor of CGL. However, inhibition of CBS or CGL alone induced a small decrease in H 2 S production. In anesthetized Sprague-Dawley rats, intrarenal arterial infusion of an H 2 S donor (NaHS) increased renal blood flow, glomerular filtration rate (GFR), urinary sodium (U Na ⅐V), and potassium (U K ⅐V) excretion. Consistently, infusion of both AOAA and PPG to inhibit the endogenous H 2 S production decreased GFR, U Na ⅐V, and U K ⅐V, and either one of these inhibitors alone had no significant effect on renal functions. Infusion of L-Cys into renal artery to increase the endogenous H 2 S production also increased GFR, U Na ⅐V, and U K ⅐V, which was blocked by AOAA plus PPG. It was shown that H 2 S had both vascular and tubular effects and that the tubular effect of H 2 S might be through inhibition of Na ϩ /K ϩ /2Cl Ϫ cotransporter and Na ϩ /K ϩ /ATPase activity. These results suggest that H 2 S participates in the control of renal function and increases urinary sodium excretion via both vascular and tubular actions in the kidney.
Ceramide-activated NAD(P)H oxidase has been reported to participate in homocysteine (Hcys)-induced abnormal metabolism of the extracellular matrix (ECM) in rat glomerular mesangial cells. However, it remains unknown whether this ceramide-redox signaling pathway contributes to glomerular injury induced by hyperhomocysteinemia (hHcys) in vivo. The present study was designed to address this question, defining the role of ceramide and activated NAD(P)H oxidase in the development of hHcys-induced glomerular injury. Uninephrectomized Sprague-Dawley rats were fed a folate-free diet for 8 weeks to produce hHcys and the de novo ceramide synthesis inhibitor myriocin or the NAD(P)H oxidase inhibitor apocynin was administrated. Rats with folate-free diet significantly increased plasma Hcys levels, renal ceramide levels, and NAD(P)H oxidase activity accompanied by marked glomerular injury. Treatment of rats with myriocin significantly reduced ceramide levels and improved glomerular injury, as shown by decreased urinary albumin excretion and reduced glomerular damage index. ECM components changed towards to normal levels with decreased tissue inhibitor of metalloproteinase-1 and increased matrix metalloproteinase-1 activity. NAD(P)H oxidase activity and Rac GTPase activity were reduced by 69 and 66%, respectively. In rats treated with apocynin, similar beneficial effects in protecting glomeruli from hHcys-induced injury were observed. These results support the view that de novo ceramide production is involved in Hcys-induced NAD(P)H oxidase activity in the kidney of hHcys rats and indicate the important role of ceramide-mediated redox signaling in hHcys-induced glomerular injury in rats.
The present study tested the hypothesis that membrane-bound NAD(P)H oxidase in coronary arterial myocytes (CAMs) is capable of producing superoxide (O(2)(*-)) toward extracellular space to exert an autocrine- or paracrine-like action in these cells. Using a high-speed wavelength-switching fluorescent microscopic imaging technique, we simultaneously monitored the binding of dihydroethidium-oxidizing product to exogenous salmon testes DNA trapped outside CAMs and to nuclear DNA as indicators of extra- and intracellular O(2)(*-) production. It was found that a muscarinic agonist oxotremorine (OXO; 80 microM) increased O(2)(*-) levels more rapidly outside than inside CAMs. In the presence of superoxide dismutase (500 U/ml) plus catalase (400 U/ml) and NAD(P)H oxidase inhibitor diphenylene iodonium (50 microM) or apocynin (100 microM), these increases in extra- and intracellular O(2)(*-) levels were substantially abolished or attenuated. The O(2)(*-) increase outside CAMs was also confirmed by detecting oxidation of nitro blue tetrazolium and confocal microscopic localization of Matrigel-trapped OxyBURST H(2)HFF Green BSA staining around these cells. By electron spin resonance spectrometry, the extracellular accumulation of O(2)(*-) was demonstrated as a superoxide dismutase-sensitive component outside CAMs. Furthermore, RNA interference of NAD(P)H oxidase subunits Nox1 or p47 markedly blocked OXO-induced increases in both extra- and intracellular O(2)(*-) levels, whereas small inhibitory RNA of Nox4 only attenuated intracellular O(2)(*-) accumulation. These results suggest that Nox1 represents a major NAD(P)H oxidase isoform responsible for extracellular O(2)(*-) production. This rapid extracellular production of O(2)(*-) seems to be unique to OXO-induced M(1)-receptor activation, since ANG II-induced intra- and extracellular O(2)(*-) increases in parallel. It is concluded that the outward production of O(2)(*-) via NAD(P)H oxidase in CAMs may represent an important producing pattern for its autocrine or paracrine actions.
Abstract-Elevated plasma homocysteine (Hcys) has been reported to participate in the development of arterial and glomerular sclerosis in Dahl salt-sensitive hypertensive (SS) rats. The mechanism resulting in hyperhomocysteinemia in these animals remains unknown. Disposal of Hcys in the kidneys plays an important role in regulating the plasma Hcys level. We, therefore, examined the activities and expressions of the enzymes involved in the metabolism of Hcys in the kidneys of SS rats, compared with that of Brown Norway rats and SSBN13 rats, a consomic subcolony of SS rats that carries a substituted chromosome 13 from Brown Norway rats. High-performance liquid chromatography analysis demonstrated that plasma Hcys levels were significantly higher in SS rats. The conversion of S-adenosylhomocysteine into Hcys via S-adenosylhomocysteine hydrolase by renal tissue was not different among these 3 rat strains. However, the metabolic rate of Hcys into cysteine was markedly reduced in the SS rat kidneys. The mRNA and protein levels of cystathionine -synthase (CBS), one of the key enzymes in the transsulfuration pathway in the kidneys, were significantly lower in SS rats. In microdissected nephron segments, CBS mRNA was shown to be mainly present in renal proximal tubules (PTs). The mRNA levels of CBS in the PTs were also significantly decreased in SS rats, accompanied by a reduced CBS activity in PTs. We conclude that hyperhomocysteinemia is associated with a decreased activity and expression of CBS in renal PTs because of the defect of chromosome 13 in SS rats. (Hypertension. 2006; 47:1094-1100.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.