Background/Aims: Branched chain amino acids (BCAAs) are known to exert an insulinotropic effect. Whether this effect is mediated by incretins (glucagon like peptide 1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) is not known. The aim of this study was to show whether an equivalent dose of BCAA elicits a greater insulin and incretin response when administered orally than intravenously (IV). Methods: Eighteen healthy, male subjects participated in 3 tests: IV application of BCAA solution, oral ingestion of BCAA and placebo in an equivalent dose (30.7 ± 1.1 g). Glucose, insulin, C-peptide, glucagon, GLP-1, GIP, valine, leucine and isoleucine concentrations were measured. Results: Rise in serum BCAA was achieved in both BCAA tests, with incremental areas under the curve (iAUC) being 2.1 times greater for IV BCAA compared with those of the oral BCAA test (p < 0.0001). Oral and IV BCAA induced comparable insulin response greater than placebo (240 min insulin iAUC: oral 3,411 ± 577 vs. IV 2,361 ± 384 vs. placebo 961.2 ± 175 pmol/L, p = 0.0006). Oral BCAA induced higher GLP-1 (p < 0.0001) and GIP response (p < 0.0001) compared with the IV or placebo. Glucose levels declined significantly (p < 0.001) in the same pattern during both BCAA tests with no change in the placebo group. Conclusions: An equivalent dose of BCAA elicited a comparable insulin and greater incretin response when administered orally and not when administered through IV. We conclude that insulinotropic effects of BCAA are partially incretin dependent.
Negative impact of increased BCAA intake on IS was only detected in vegans, that is, subjects with low basal amino acids/BCAA intake, which appear to be unable to induce sufficient compensatory changes within AT and SM on a BCAA challenge.
The electrochemical behavior of tolterodine, an antimuscarinic drug used to treat urge incontinence and overactive bladder, was investigated using cyclic and differential pulse voltammetry at glassy carbon electrode. Electrooxidation of tolterodine proceeds as a complex two‐step pH‐dependent process. Controlled potential electrolysis of tolterodine solutions was performed at platinum gauze electrode in methanolic, aqueous‐methanolic and acetonitrile media. Electrolyzed solutions were analyzed using liquid chromatography with electrospray ionization quadrupole time‐of‐flight mass spectrometry. 5‐Hydroxymethyl tolterodine, the main biologically active metabolite of tolterodine, was identified among monomeric oxidation products. Dimeric products, formed by oxidative coupling of phenoxy radicals, were found in all electrolyzed solutions. The mechanism of the electrochemical oxidation of tolterodine has been proposed.
Strategic (Comprehensive) Partnership, as a general concept and also as a specific foreign policy instrument for developing the European Union's relations with key world countries (strategic partners), involves not only equivalent, mutually beneficial and institutionalized cooperation in many areas but also a joint solution to strategic (security and defense) issues and issues of regional and global governance where parties not only cooperate but also share responsibility. The objective of this article is to analyze the legal instruments (criteria) of the EU-China Strategic Partnership and to compare its character with the general legal concept of the EU Strategic Partnership. Based on this analysis we will answer the question whether the EU-China Strategic Partnership shows evidence of unclarity, imperfection and elusiveness of the EU's Strategic Partnership.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.