Broad scale population estimates of declining species are desired for conservation efforts. However, for many secretive species including large carnivores, such estimates are often difficult. Based on published density estimates obtained through camera trapping, presence/absence data, and globally available predictive variables derived from satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar, across the species’ entire range. We then combined these models in a hierarchical framework to estimate the total population. Our models indicate that potential jaguar density is best predicted by measures of primary productivity, with the highest densities in the most productive tropical habitats and a clear declining gradient with distance from the equator. Jaguar distribution, in contrast, is determined by the combined effects of human impacts and environmental factors: probability of jaguar occurrence increased with forest cover, mean temperature, and annual precipitation and declined with increases in human foot print index and human density. Probability of occurrence was also significantly higher for protected areas than outside of them. We estimated the world’s jaguar population at 173,000 (95% CI: 138,000–208,000) individuals, mostly concentrated in the Amazon Basin; elsewhere, populations tend to be small and fragmented. The high number of jaguars results from the large total area still occupied (almost 9 million km2) and low human densities (< 1 person/km2) coinciding with high primary productivity in the core area of jaguar range. Our results show the importance of protected areas for jaguar persistence. We conclude that combining modelling of density and distribution can reveal ecological patterns and processes at global scales, can provide robust estimates for use in species assessments, and can guide broad-scale conservation actions.
Density is crucial for understanding large carnivore ecology and conservation, but estimating it has proven methodologically difficult. We conducted 1 year of camera trapping to estimate jaguar (Panthera onca) density and population structure in the Los Llanos region of Venezuela on the Hato Piñero ranch, where hunting is prohibited and livestock are excluded from half of ranch lands. We identified 42 different jaguars and determined their sex, age class, and reproductive status. We estimated adult jaguar densities with spatial capture-recapture models, using sex/reproductive state and session as covariates. Models without temporal variation received more support than models that allowed variation between sessions. Males, reproductive females, and nonreproductive females differed in their density, baseline detectability, and movement. The best estimate of total adult jaguar population density was 4.44 individuals/100 km 2 . Based on reproductive female density and mean number of offspring per female, we estimated cub density at 3.23 individuals/ 100 km 2 and an overall density of 7.67 jaguars/100 km 2 . Estimated jaguar population structure was 21% males, 11% nonreproductive females, 26% reproductive females, and 42% cubs. We conclude that extending the sampling period to 1 year increases the detectability of females and cubs and makes density estimates more robust as compared to the more common short studies. Our results demonstrate that the Venezuelan Llanos represent important jaguar habitat, and further, they emphasize the importance of protected areas and hunting restrictions for carnivore conservation.
The diversity of microorganisms associated with speleological sources has mainly been studied in limestone caves, while studies in silicate caves are still under development. Here, we profiled the microbial diversity of opal speleothems from a silicate cave in Guiana Highlands. Bulk DNAs were extracted from three speleothems of two types, i.e., one soft whitish mushroom-like speleothem and two hard blackish coral-like speleothems. The extracted DNAs were amplified for sequencing the V3–V4 region of the bacterial 16S rRNA gene by MiSeq. A total of 210,309 valid reads were obtained and clustered into 3184 phylotypes or operational taxonomic units (OTUs). The OTUs from the soft whitish speleothem were mostly affiliated with Acidobacteriota, Pseudomonadota (formerly, Proteobacteria), and Chloroflexota, with the OTUs ascribed to Nitrospirota being found specifically in this speleothem. The OTUs from the hard blackish speleothems were similar to each other and were mostly affiliated with Pseudomonadota, Acidobacteriota, and Actinomycetota (formerly, Actinobacteria). These OTU compositions were generally consistent with those reported for limestone and silicate caves. The OTUs were further used to infer metabolic features by using the PICRUSt bioinformatic tool, and membrane transport and amino acid metabolism were noticeably featured. These and other featured metabolisms may influence the pH microenvironment and, consequently, the formation, weathering, and re-deposition of silicate speleothems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.