In January 2020, an extreme precipitation event occurred over southeast Brazil, with the epicentre in Minas Gerais state. Although extreme rainfall frequently occurs in this region during the wet season, this event led to the death of 56 people, drove thousands of residents into homelessness, and incurred millions of Brazilian Reais (BRL) in financial loss through the cascading effects of flooding and landslides. The main question that arises is: To what extent can we blame climate change? With this question in mind, our aim was to assess the socioeconomic impacts of this event and whether and how much of it can be attributed to human-induced climate change. Our findings suggest that human-induced climate change made this event >70% more likely to occur. We estimate that >90,000 people became temporarily homeless, and at least BRL 1.3 billion (USD 240 million) was lost in public and private sectors, of which 41% can be attributed to human-induced climate change. This assessment brings new insights about the necessity and urgency of taking action on climate change, because it is already effectively impacting our society in the southeast Brazil region. Despite its dreadful impacts on society, an event with this magnitude was assessed to be quite common (return period of ∼4 years). This calls for immediate improvements on strategic planning focused on mitigation and adaptation.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Southeast Brazil has great economic importance for Brazil and is highly vulnerable to extreme events like floods and droughts. Studies have shown an increase of temperature in this region. Using a new detection and attribution framework (Ribes et al., 2017, https://doi.org/10.1007/s00382-016-3079-6) and Coupled Model Intercomparison Project Phase 5 models, this change is found to be largely due to greenhouse gases. We estimate that greenhouse gases contribute a warming of 0.95 to 1.5 °C to the observed warming trend of 1.1 °C between 1955 and 2004. Temperature changes from natural and nongreenhouse gas anthropogenic forcing are estimated to be small over this period. Results are robust using different time windows. Using the Community Earth System Model ensembles to evaluate the impacts of internal variability, observational and model error shows that most uncertainty arises from model error.
The State of São Paulo, Brazil (SSP) was impacted by severe water shortages during the intense austral summer drought of 2013/2014 and 2014/2015 (1415SD). This study seeks to understand the features and physical processes associated with these summer droughts in the context of other droughts over the region during 1961–2010. Thus, this study examines the spatio-temporal characteristics of anomalously low precipitation over SSP and the associated large-scale dynamics at seasonal timescales, using an observation-based dataset from the Climatic Research Unit (CRU) and model simulation outputs from the Met Office Hadley Centre Global Environment Model (HadGEM3-GA6 at N216 resolution). The study analyzes Historical and Natural simulations from the model to examine the role of human-induced climate forcing on droughts over SSP. Composites of large-scale fields associated with droughts are derived from ERA-20C and ERA-Interim reanalysis and the model simulations. HadGEM3-GA6 simulations capture the observed interannual variability of normalized precipitation anomalies over SSP, but with biases. Drought events over SSP are related to subsidence over the region. This is associated with reduced atmospheric moisture over the region as indicated by the analysis of the vertically integrated moisture flux convergence, which is dominated by reduced moisture flux convergence. The Historical simulations simulate the subsidence associated with droughts, but there are magnitude and location biases. The similarities between the circulation features of the severe 1415SD and other drought events over the region show that understanding of the dynamics of the past drought events over SSP could guide assessment of changes in risk of future droughts and improvements of model performance. The study highlights the merits and limitations of the HadGEM3-GA6 simulations. The model possesses the skills in simulating the large-scale atmospheric circulations modulating precipitation variability, leading to drought conditions over SSP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.