Trachil stressed the possibility of platelet consumption forming pulmonary thrombi in patients with COVID-19, 1 which coincides with the theory we are working on right now that pulmonary thrombi may be responsible for hypoxemia before typical acute respiratory distress syndrome develops, 2 called silent hypoxemia by some experts. 3 As for anti-platelet drugs attenuating thrombi formation, the balance would be too delicate to maintain, because they may interfere with the platelet blocking viral invasion.
The major goal in restorative dentistry is to develop a true regenerative approach that fully recovers hydroxyapatite crystals within the caries lesion. Recently, a rationally designed self-assembling peptide P11-4 (Ace-QQRFEWEFEQQ-NH2) has been developed to enhance remineralization on initial caries lesions, yet its applicability on dentin tissues remains unclear. Thus, the present study investigated the interaction of P11-4 with the organic dentin components as well as the effect of P11-4 on the proteolytic activity, mechanical properties of the bonding interface, and nanoleakage evaluation to artificial caries-affected dentin. Surface plasmon resonance and atomic force microscopy indicated that P11-4 binds to collagen type I fibers, increasing their width from 214 ± 4 nm to 308 ± 5 nm ( P < 0.0001). P11-4 also increased the resistance of collagen type I fibers against the proteolytic activity of collagenases. The immediate treatment of artificial caries-affected dentin with P11-4 enhanced the microtensile bonding strength of the bonding interface ( P < 0.0001), reaching values close to sound dentin and decreasing the proteolytic activity at the hybrid layer; however, such effects decreased after 6 mo of water storage ( P < 0.05). In conclusion, P11-4 interacts with collagen type I, increasing the resistance of collagen fibers to proteolysis, and improves stability of the hybrid layer formed by artificial caries-affected dentin.
Carrageenan is a thermoreversible polymer of natural origin widely used in food and pharmaceutical industry that presents a glycosaminoglycan-like structure. Herein, we show that kappa-type carrageenan extracted by a semi-refined process from the red seaweed Kappaphycus alvarezii displayed both chemical and structural properties similar to a commercial carrageenan. Moreover, both extracted carrageenan hydrogel and commercial carrageenan hydrogel can serve as a scaffold for in vitro culture of human skin-derived multipotent stromal cells, demonstrating considerable potential as cell-carrier materials for cell delivery in tissue engineering. Skin-derived multipotent stromal cells cultured inside the carrageenan hydrogels showed a round shape morphology and maintained their growth and viability for at least one week in culture. Next, the effect of the extracted carrageenan hydrogel loaded with human skin-derived multipotent stromal cells was evaluated in a mouse model of full-thickness skin wound. Macroscopic and histological analyses revealed some pointed ameliorated features, such as reduced inflammatory process, faster initial recovery of wounded area, and improved extracellular matrix deposition. These results indicate that extracted carrageenan hydrogel can serve as a scaffold for in vitro growth and maintenance of human SD-MSCs, being also able to act as a delivery system of cells to wounded skin. Thus, evaluation of the properties discussed in this study contribute to a further understanding and specificities of the potential use of carrageenan hydrogel as a delivery system for several applications, further to skin wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.