Misinformation is usually adjusted to fit distinct narratives and propagates rapidly through social networks. False beliefs, once adopted, are rarely corrected. Amidst the COVID-19 crisis, pandemic-deniers and people who oppose wearing face masks or quarantine have already been a substantial aspect of the development of the pandemic. With the vaccine for COVID-19, different anti-vaccine narratives are being created and are probably being adopted by large population groups with critical consequences. Assuming full adherence to vaccine administration, we use a diffusion model to analyse epidemic spreading and the impact of different vaccination strategies, measured with the average years of life lost, in three network topologies (a proximity, a scale-free and a small-world network). Then, using a similar diffusion model, we consider the spread of anti-vaccine views in the network, which are adopted based on a persuasiveness parameter of anti-vaccine views. Results show that even if anti-vaccine narratives have a small persuasiveness, a large part of the population will be rapidly exposed to them. Assuming that all individuals are equally likely to adopt anti-vaccine views after being exposed, more central nodes in the network, which are more exposed to these views, are more likely to adopt them. Comparing years of life lost, anti-vaccine views could have a significant cost not only on those who share them, since the core social benefits of a limited vaccination strategy (reduction of susceptible hosts, network disruptions and slowing the spread of the disease) are substantially shortened.
Open Science is encouraged by the European Union and many other political and scientific institutions. However, scientific practice is proving slow to change. We propose, as early career researchers, that it is our task to change scientific research into open scientific research and commit to Open Science principles.
Different patterns in the incidence of road accidents are revealed when considering areas with increased levels of urbanization. To understand these patterns, road accident data from England and Wales is explored. In particular, the data are used to (i) generate time series for comparison of the incidence of road accidents in urban as opposed to rural areas, (ii) analyse the relationship between the number of road accidents and the population size of a set of urban areas, and (iii) model the likelihood of suffering an accident in an urban area and its dependence with population size. It is observed that minor and serious accidents are more frequent in urban areas, whereas fatal accidents are more likely in rural areas. It is also shown that, generally, the number of accidents in an urban area depends on population size superlinearly, with this superlinear behaviour becoming stronger for lower degrees of severity. Finally, given an accident in an urban area, the probability that the accident is fatal or serious decreases with population size and the probability that it is minor, increases sublinearly. These findings promote the question as to why such behaviours exist, the answer to which will lead to more sustainable urban policies.
Models of human migration provide powerful tools to forecast the flow of migrants, measure the impact of a policy, determine the cost of physical and political frictions and more. Here, we analyse the migration of individuals from and to cities in the US, finding that city to city migration follows scaling laws, so that the city size is a significant factor in determining whether, or not, an individual decides to migrate and the city size of both the origin and destination play key roles in the selection of the destination. We observe that individuals from small cities tend to migrate more frequently, tending to move to similar-sized cities, whereas individuals from large cities do not migrate so often, but when they do, they tend to move to other large cities. Building upon these findings we develop a scaling model which describes internal migration as a two-step decision process, demonstrating that it can partially explain migration fluxes based solely on city size. We then consider the impact of distance and construct a gravity-scaling model by combining the observed scaling patterns with the gravity law of migration. Results show that the scaling laws are a significant feature of human migration and that the inclusion of scaling can overcome the limits of the gravity and the radiation models of human migration.
Social media posts incorporate real-time information that has, elsewhere, been exploited to predict social trends. This paper considers whether such information can be useful in relation to crime and fear of crime. A large number of tweets were collected from the 18 largest Spanish-speaking countries in Latin America, over a period of 70 days. These tweets are then classified as being crime-related or not and additional information is extracted, including the type of crime and where possible, any geo-location at a city level. From the analysis of collected data, it is established that around 15 out of every 1000 tweets have text related to a crime, or fear of crime. The frequency of tweets related to crime is then compared against the number of murders, the murder rate, or the level of fear of crime as recorded in surveys. Results show that, like mass media, such as newspapers, social media suffer from a strong bias towards violent or sexual crimes. Furthermore, social media messages are not highly correlated with crime. Thus, social media is shown not to be highly useful for detecting trends in crime itself, but what they do demonstrate is rather a reflection of the level of the fear of crime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.