Os eventos climáticos extremos demonstram um papel significativo das sociedades, seja por sua intensidade, pela frequência de ocorrência ou pela vulnerabilidade socioambiental. Objetiva-se classificar e quantificar as precipitações na porção leste da região Nordeste (NE) do Brasil através do índice SPI, como também detectar maiores déficits e/ou excesso de precipitação. O Standardized Precipitation Index (SPI) foi utilizado para quantificar déficits de precipitação e identificar eventos secos e chuvosos em diferentes escalas temporais, auxiliando no monitoramento da sua dinâmica temporal. No cálculo do SPI foi utilizado a distribuição gama, e estimados os limites de precipitação que representam a cada categoria do índice. Foram utilizados dados pluviométricos das capitais dos estados que compõem no leste do Nordeste do Brasil, no período de 1961 a 2014 provenientes da Agência Nacional das Águas (ANA). A análise de Ondeletas foi utilizada com objetivo de identificar ciclos de extremos pluviométricos e de suas causas através das escalas temporais detectadas em séries de precipitação para as capitais do leste do Nordeste do Brasil. Os resultados mostraram que as ocorrências de secas foram as maiores em todas as cidades, todavia na categoria extrema os eventos chuvosos revelaram-se mais frequentes. Os anos normais foram os mais persistentes em todas cidades analisadas. Recife apresentou máximas ocorrências de eventos chuvosos. Os eventos com intensidade extrema, seja chuvoso ou seco, ocorreram em boa parte da série em anos de ENOS. O SPI revelou-se uma excelente ferramenta na detecção e no monitoramento de seca/chuvas na região analisada. A presença de escalas temporais relacionadas com eventos ENOS, Dipolo do Atlântico, ciclo de manchas solares e Oscilação Decadal do Pacífico foram identificadas em todas as capitais do leste do NEB. Characterization of Drought Events Based on the Standardized of Precipitation Index for the East NortheastA B S T R A C TExtreme weather events demonstrate a significant role for societies, whether by their intensity, frequency of occurrence or socio-environmental vulnerability. Objective-classify and quantify as precipitation in the eastern portion of the Northeast (NE) of Brazil through the SPI index, as well as detect larger deficits and / or excess occurrence. The Standardized Precipitation Index (SPI) was used to quantify use deficits and to identify dry and rainy events in different temporal variations, helping to monitor their temporal utilization. No SPI calculations were used for gamma distribution, and estimated capture limits representing each category of the index. Rainfall data were used from the capitals of the states that make up the eastern Northeast of Brazil, with no period from 1961 to 2014, Registration of the National Water Agency (ANA). A wave analysis was used to identify extreme rainfall cycles and their causes caused by temporary variations detected in monitoring series for the eastern capitals of Brazil. The results shown as drought occurrences were the highest in all cities, however in the extreme category of rain events most frequently revealed. The normal years were the most persistent in all cities analyzed. Recife presents maximum occurrences of rain events. Extreme intensity events, whether rainy or dry, occur in much of the series in ENSO years. The SPI revealed an excellent tool for detection and monitoring of drought / gloves in the analyzed region. The presence of temporary variations related to ENOS, Atlantic Dipole, sunspot cycle and Pacific Oscillation events are identified in all eastern NEB capitals.Keywords: SPI; extreme rainfall; drought; Wavelet analysis.
Resumo O monitoramento dos parâmetros biofísicos de uma determinada região é de suma importância para sua população, tendo em vista os impactos causados por fenômenos climáticos de grande escala e a sazonalidade dos sistemas meteorológicos que afetam a região. Portanto, o objetivo do estudo é analisar a sazonalidade dos parâmetros biofísicos índice de Vegetação por Diferença Normalizada (IVDN) e temperatura da superfície terrestre (TST) assim como, sua interação com a chuva no Estado de Alagoas para os anos de 2001 e 2016 sobe influência de La Niña. Foram utilizados produtos de IVDN e TST do sensor MODIS, satélite TERRA, processados através do software Qgis 2.18.3. Inicialmente, foram realizados cálculos com os fatores de ajuste nas imagens de IVDN e TST, e posteriormente foram elaborados os mapas temáticos. Os resultados obtidos mostram um aumento no último trimestre do ano de 2016 nas classes de vegetação rala e solo exposto e uma diminuição da vegetação densa em relação ao ano de 2001, nas demais classes houve uma variabilidade sazonal da cobertura vegetal. Os mapas de TST apresentam correlação forte com o IVDN, mostrando uma relação inversamente proporcional entre os parâmetros. Na precipitação verificou-se a sua influência direta na resposta do IVDN e TST, devido ao tipo de vegetação encontrado na região.
The Northeast region of Brazil (NRB) is the most populous semiarid area in the world and is extremely susceptible to droughts. The severity and duration of these droughts depend on several factors, and they do not necessarily follow the same behavior. The aim of this work is to evaluate the frequency of droughts in the NRB and calculate the return period of each drought event using the copula technique, which integrates the duration and severity of the drought in the NRB in a joint bivariate distribution. Monthly precipitation data from 96 meteorological stations spatially distributed in the NRB, ranging from 1961 to 2017, are used. The copula technique is applied to the Standardized Precipitation Index (SPI) on the three-month time scale, testing three families of Archimedean copula functions (Gumbel–Hougaard, Clayton and Frank) to reveal which model is best suited for the data. Averagely, the most frequent droughts observed in the NRB are concentrated in the northern sector of the region, with an observed duration varying from three and a half to five and a half months. However, the eastern NRB experiences the most severe droughts, lasting for 14 to 24 months. The probability distributions that perform better in modeling the series of severity and duration of droughts are exponential, normal and lognormal. The observed severity and duration values show that, for average values, the return period across the region is approximately 24 months. Still in this regard, the southernmost tip of the NRB stands out for having a return period of over 35 months. Regarding maximum observed values of severity and duration, the NRB eastern strip has the longest return period (>60 months), mainly in the southeastern portion where a return period above 90 months was observed. The northern NRB shows the shortest return period (~45 months), indicating that it is the NRB sector with the highest frequency of intense droughts. These results provide useful information for drought risk management in the NRB.
Drought causes serious social and environmental problems that have great impact on the lives of thousands of people all around the world. The purpose of this research was to investigate the trends in humid conditions in the northeast of Brazil (NEB) in the highest climatic precipitation quarters, November-December-January (NDJ), February-March-April (FMA), and May-June-July (MJJ), through the standardized precipitation and evapotranspiration index (SPEI), considering an alternative statistical approach. Precipitation and potential evapotranspiration (PET) time series for the calculation of the SPEI were extracted for the 1794 NEB municipalities between 1980 and 2015 from a grid dataset with a resolution of 0.25 • × 0.25 • using the bilinear interpolation method. The trends and statistical significance of the SPEI were estimated by quantile regression (QR) and the bootstrap test. In NDJ, opposite trends were seen in the eastern NEB (~0.5 SPEI/decade) and in the south (~−0.6 SPEI/decade). In FMA, most of NEB presented negative trends in the 0.50 and 0.95 quantiles (~−0.3 SPEI/decade), while in MJJ, most of NEB presented positive trends in all quantiles studied (~0.4 SPEI/decade). The results are consistent with observational analyses of extreme rainfall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.