The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z > 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 3.°2 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360–980 nm with a spectral resolution that ranges from 2000–5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 0.″1 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 × 10−17 erg s−1 cm−2 in 1000 s for galaxies at z = 1.4–1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned.
We report the discovery of a 1 • (∼ 50 kpc) long stellar tidal stream emanating from the dwarf galaxy DDO 44, a likely satellite of Local Volume galaxy NGC 2403 located ∼ 70 kpc in projection from its companion. NGC 2403 is a roughly Large Magellanic Cloud stellar-mass galaxy 3 Mpc away, residing at the outer limits of the M 81 group. We are mapping a large region around NGC 2403 as part of our MADCASH (Magellanic Analogs' Dwarf Companions and Stellar Halos) survey, reaching point source depths (90% completeness) of (g, i) = (26.5, 26.2). Density maps of old, metal-poor RGB stars reveal tidal streams extending on two sides of DDO 44, with the streams directed toward NGC 2403. We estimate total luminosities of the original DDO 44 system (dwarf and streams combined) to be M i,tot = −13.4 and M g,tot = −12.6, with ∼ 25 − 30% of the luminosity in the streams. Analogs of ∼LMC-mass hosts with massive tidally disrupting satellites are rare in the Illustris simulations, especially at large separations such as that of DDO 44. The few analogs that are present in the models suggest that even low-mass hosts can efficiently quench their massive satellites.
We present the North Galactic Cap sample of the Extremely Luminous Quasar Survey (ELQS-N), which targets quasars with M 1450 < −27 at 2.8 ≤ z < 5 in an area of ∼ 7600 deg 2 of the Sloan Digital Sky Survey (SDSS) footprint with 90°< RA < 270°. Based on a near-infrared/infrared JKW2 color cut, the ELQS selection efficiently uses random forest methods to classify quasars and to estimate photometric redshifts; this scheme overcomes some of the difficulties of pure optical quasar selection at z ≈ 3. As a result, we retain a completeness of > 70% over z ∼ 3.0 − 5.0 at m i 17.5, limited toward fainter magnitudes by the depth of the Two Micron All Sky Survey (2MASS). The presented quasar catalog consists of a total of 270 objects, of which 39 are newly identified in this work with spectroscopy obtained at the Vatican Advanced Technology Telescope and the MMT 6.5 m telescope. In addition to the high completeness, which allowed us to discover new quasars in the already well-surveyed SDSS North Galactic Cap, the efficiency of our selection is relatively high at ∼ 79%. Using 120 objects of this quasar sample we are able to extend the previously measured optical quasar luminosity function (QLF) by one magnitude toward the bright end at 2.8 ≤ z ≤ 4.5. A first analysis of the QLF suggests a relatively steep bright-end slope of β ≈ −4 for this sample. This result contrasts with previous results in the same redshift range, which find a much flatter slope around β ∼ −2.5, but agrees with recent measurements of the bright-end slope at lower and higher redshifts. Our results constrain the bright-end slope at z = 2.8 − 4.5 to β < −2.94 with a 99% confidence.
Stellar halos offer fossil evidence for hierarchical structure formation. Since halo assembly is predicted to be scale-free, stellar halos around low-mass galaxies constrain properties such as star formation in the accreted subhalos and the formation of dwarf galaxies. However, few observational searches for stellar halos in dwarfs exist. Here we present gi photometry of resolved stars in isolated Local Group dwarf irregular galaxy IC 1613 (M ∼ 10 8 M ). These Subaru/Hyper Suprime-Cam observations are the widest and deepest of IC 1613 to date. We measure surface density profiles of young mainsequence, intermediate to old red giant branch, and ancient horizontal branch stars outside of 12 (∼ 2.6 kpc; 2.5 half-light radii) from the IC 1613 center. All of the populations extend to ∼ 24 (∼ 5.2 kpc; 5 half-light radii), with the older populations best fit by a broken exponential in these outer regions. Comparison with earlier studies sensitive to IC 1613's inner regions shows that the density of old stellar populations steepens substantially with distance from the center; we trace the g-band effective surface brightness to an extremely faint limit of ∼ 33.7 mag arcsec −2 . Conversely, the distribution of younger stars follows a single, shallow exponential profile in the outer regions, demonstrating different formation channels for the younger and older components of IC 1613. The outermost, intermediate-age and old stars have properties consistent with those expected for accreted stellar halos, though future observational and theoretical work is needed to definitively distinguish this scenario from other possibilities.
We announce the second data release (DR2) of the NOIRLab Source Catalog (NSC), using 412,116 public images from CTIO-4 m+DECam, the KPNO-4 m+Mosaic3, and the Bok-2.3 m+90Prime. NSC DR2 contains over 3.9 billion unique objects, 68 billion individual source measurements, covers ≈35,000 square degrees of the sky, has depths of ≈23 mag in most broadband filters with ≈1%–2% photometric precision, and astrometric accuracy of ≈7 mas. Approximately 1.9 billion objects within ≈30,000 square degrees of sky have photometry in three or more bands. There are several improvements over NSC DR1. DR2 includes 156,662 (61%) more exposures extending over 2 more years than in DR1. The southern photometric zero-points in griz are more accurate by using the Skymapper DR1 and ATLAS-Ref2 catalogs, and improved extinction corrections were used for high-extinction regions. In addition, the astrometric accuracy is improved by taking advantage of Gaia DR2 proper motions when calibrating the astrometry of individual images. This improves the NSC proper motions to ∼2.5 mas yr−1 (precision) and ∼0.2 mas yr−1 (accuracy). The combination of sources into unique objects is performed using a DBSCAN algorithm and mean parameters per object (such as mean magnitudes, proper motion, etc.) are calculated more robustly with outlier rejection. Finally, eight multi-band photometric variability indices are calculated for each object and variable objects are flagged (23 million objects). NSC DR2 will be useful for exploring solar system objects, stellar streams, dwarf satellite galaxies, quasi-stellar objects, variable stars, high proper-motion stars, and transients. Several examples of these science use cases are presented. The NSC DR2 catalog is publicly available via the NOIRLab’s Astro Data Lab science platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.