In this paper, we develop a Verilog-A implementable compact model for the dynamic switching of ferroelectric Fin-FETs (Fe-FinFETs) for asymmetric non-periodic input signals.We use the multi-domain Preisach Model to capture the saturated P − E loop of the ferroelectric capacitors. In addition to the saturation loop, we model the history dependent minor loop paths in the P − E by tracing input signals' turning points. To capture the input signals' turning points, we propose an R − C circuit based approach in this work. We calibrate our proposed model with the experimental data, and it accurately captures the history effect and minor loop paths of the ferroelectric capacitor. Furthermore, the elimination of storage of each turning point makes the proposed model computationally efficient compared with the previous implementations. We also demonstrate the unique electrical characteristics of Fe-FinFETs by integrating the developed compact model of Fe-Cap with the BSIM-CMG model of 7nm FinFET.
<div>In this paper, we develop a Verilog-A implementable compact model for the dynamic switching of ferroelectric Fin-FETs (Fe-FinFETs) for asymmetric non-periodic input signals. We use the multi-domain Preisach Model to capture the saturated P-E loop of the ferroelectric capacitors. In addition to the saturation loop, we model the history dependent minor loop paths in the P-E by tracing input signals’ turning points. To capture the input signals’ turning points, we propose an R-C circuit based approach in this work. We calibrate our proposed model with the experimental data, and it accurately captures the history effect and minor loop paths of the ferroelectric capacitor. Furthermore, the elimination of storage of each turning point makes the proposed model computationally efficient compared with the previous implementations. We also demonstrate the unique electrical characteristics of Fe-FinFETs by integrating the developed compact model of Fe-Cap with the BSIM-CMG model of 7nm FinFET.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.