Polydopamine is a dark brown-black insoluble biopolymer produced by autoxidation of dopamine. Although its structure and polymerization mechanism have not been fully understood, there has been a rapid growth in the synthesis and applications of polydopamine nanostructures in biomedical fields such as drug delivery, photothermal therapy, bone and tissue engineering, and cell adhesion and patterning, as well as antimicrobial applications. This article is dedicated to reviewing some of the recent polydopamine developments in these biomedical fields. Firstly, the polymerization mechanism is introduced with a discussion of the factors that influence the polymerization process. The discussion is followed by the introduction of various forms of polydopamine nanostructures and their recent applications in biomedical fields, especially in drug delivery. Finally, the review is summarized followed by brief comments on the future prospects of polydopamine.
The mussel inspired polydopamine has acquired great relevance in the field of nanomedicines, owing to its incredible physicochemical properties. Polydopamine nanoparticles (PDA NPs) due to their low cytotoxicity, high biocompatibility and ready biodegradation have already been widely investigated in various drug delivery, chemotherapeutic, and diagnostic applications. In addition, owing to its highly reactive nature, it possesses a very high capability for loading drugs and chemotherapeutics. Therefore, the loading efficiency of PDA NPs for an antibiotic i.e., gentamicin (G) has been investigated in this work. For this purpose, an in-situ polymerization method was studied to load the drug into PDA NPs using variable drug: monomer ratios. Scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) confirmed the successful loading of drug within PDA NPs, mainly via hydrogen bonding between the amine groups of gentamicin and the hydroxyl groups of PDA. The loading amount was quantified by liquid chromatography–mass spectrometry (LC-MS) and the highest percentage loading capacity was achieved for G-PDA prepared with drug to monomer ratio of 1:1. Moreover, the gentamicin loaded PDA NPs were tested in a preliminary antibacterial evaluation using the broth microdilution method against both Gram-(+) Staphylococcus aureus and Gram-(−) Pseudomonas aeruginosa microorganisms. The highest loaded G-PDA sample exhibited the lowest minimum inhibitory concentration and minimum bactericidal concentration values. The developed gentamicin loaded PDA is very promising for long term drug release and treating various microbial infections.
Since the first time mussel‐inspired polymer polydopamine (PDA) was discovered, it has gained enormous attention from numerous scientists, especially those working in the field of drug delivery and bacterial and tumor treatment, due to its distinctive properties, such as surface chemistry, biocompatibility, capability to adhere to any surface, and excellent photothermal conversion. Studies using PDA in various types of structures for therapeutic purposes have been carried out extensively in recent years. Considering the rapid development in the area, this review aims to cover and highlight the latest achievements (from 2016 to present) with respect to PDA‐based materials for therapeutic purposes. A description of the diverse structures of PDA and its formation strategy, including colloidal particles, hollow structures, and coating films, are discussed. In addition, the main focus of this review is on the therapeutic applications of these PDA nanostructures.
Polydopamine (PDA), being highly reactive in nature, has acquired great attention in multi-disciplinary fields. Owing to its fascinating properties, including its biocompatible, non-toxic and readily bio-degradative nature, we investigated the drug loading and release behavior, using an aminoglycoside antibiotic gentamicin (G) as a model drug. The gentamicin was loaded into the PDA nanoparticles (NPs) via an in situ polymerization method. The release kinetics of the gentamicin was then studied in pH 3, 5 and 7.4. Two batches with varied gentamicin loadings, G-PDA NPs 1:1 (with approx. 84.1% loaded gentamicin) and G-PDA NPs 0.6:1 (with approx. 72.7% loaded gentamicin), were studied. The drug release data were analyzed by LC–MS. The PDA showed good stability in terms of gentamicin release at alkaline pH over a period of seven days. The negative surface charge of PDA at pH 7.4 makes a strong bond with gentamicin, hence preventing its release from the PDA NPs. However, at pH 5 and 3, the amine groups of PDA are more prone towards protonation, making PDA positively charged, hence the repulsive forces caused the gentamicin to detach and release from the G-PDA NPs. Consequently, approx. 40% and 55% drug release were observed at pH 5 and 3, respectively, from the G-PDA NPs 1:1. However, the drug released from G-PDA NPs 0.6:1 was found to be one half as compared to the G-PDA NPs 1:1, which is obvious to the concentration gradient. These findings suggested that the in situ loading method for gentamicin could provide drug release over a period of seven days, hence defending the drug’s efficacy and safety challenges. Furthermore, two kinetic models, namely the Ritger–Peppas and Higuchi models, were implemented to determine the drug release kinetics. Curve fitting analysis supported our findings for the drug release kinetics which are followed by PDA structural changes in response to pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.