The useful life of electrical and electronic equipment (EEE) has been shortened as a consequence of the advancement in technology and change in consumer patterns. This has resulted in the generation of large quantities of electronic waste (e-waste) that needs to be managed. The handling of e-waste including combustion in incinerators, disposing in landfill or exporting overseas is no longer permitted due to environmental pollution and global legislations. Additionally, the presence of precious metals (PMs) makes e-waste recycling attractive economically. In this paper, current metallurgical processes for the extraction of metals from e-waste, including existing industrial routes, are reviewed. In the first part of this paper, the definition, composition and classifications of e-wastes are described. In the second part, separation of metals from e-waste using mechanical processing, hydrometallurgical and pyrometallurgical routes are critically analyzed. Pyrometallurgical routes are comparatively economical and eco-efficient if the hazardous emissions are controlled. Currently, pyrometallurgical routes are used initially for the segregation and upgrading of PMs (gold and silver) into base metals (BMs) (copper, lead and nickel) and followed by hydrometallurgical and electrometallurgical processing for the recovery of pure base and PMs. For the recycling of e-waste in Australia, challenges such as collection, transportation, liberation of metal fractions, and installation of integrated smelting and refining facilities are identified.
Polydopamine is a dark brown-black insoluble biopolymer produced by autoxidation of dopamine. Although its structure and polymerization mechanism have not been fully understood, there has been a rapid growth in the synthesis and applications of polydopamine nanostructures in biomedical fields such as drug delivery, photothermal therapy, bone and tissue engineering, and cell adhesion and patterning, as well as antimicrobial applications. This article is dedicated to reviewing some of the recent polydopamine developments in these biomedical fields. Firstly, the polymerization mechanism is introduced with a discussion of the factors that influence the polymerization process. The discussion is followed by the introduction of various forms of polydopamine nanostructures and their recent applications in biomedical fields, especially in drug delivery. Finally, the review is summarized followed by brief comments on the future prospects of polydopamine.
This paper investigates the chaotic behavior and synchronization of two different coupled chaotic FitzHugh-Nagumo (FHN) neurons with unknown parameters under external electrical stimulation (EES). The coupled FHN neurons of different parameters admit unidirectional and bidirectional gap junctions in the medium between them. Dynamical properties, such as the increase in synchronization error as a consequence of the deviation of neuronal parameters for unlike neurons, the effect of difference in coupling strengths caused by the unidirectional gap junctions, and the impact of large time-delay due to separation of neurons, are studied in exploring the behavior of the coupled system. A novel integral-based nonlinear adaptive control scheme, to cope with the infeasibility of the recovery variable, for synchronization of two coupled delayed chaotic FHN neurons of different and unknown parameters under uncertain EES is derived. Further, to guarantee robust synchronization of different neurons against disturbances, the proposed control methodology is modified to achieve the uniformly ultimately bounded synchronization. The parametric estimation errors can be reduced by selecting suitable control parameters. The effectiveness of the proposed control scheme is illustrated via numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.