Polydopamine is a dark brown-black insoluble biopolymer produced by autoxidation of dopamine. Although its structure and polymerization mechanism have not been fully understood, there has been a rapid growth in the synthesis and applications of polydopamine nanostructures in biomedical fields such as drug delivery, photothermal therapy, bone and tissue engineering, and cell adhesion and patterning, as well as antimicrobial applications. This article is dedicated to reviewing some of the recent polydopamine developments in these biomedical fields. Firstly, the polymerization mechanism is introduced with a discussion of the factors that influence the polymerization process. The discussion is followed by the introduction of various forms of polydopamine nanostructures and their recent applications in biomedical fields, especially in drug delivery. Finally, the review is summarized followed by brief comments on the future prospects of polydopamine.
A novel ultrasensitive immunoassay method was developed based on the electrochemical measurement of polyaniline, which was catalytically produced by horseradish peroxidase-functionalized gold nanoparticle (HRP-Au NP) probe at an immunosensor. The immunosensor was prepared step-wise by first modifying the electrode with reduced graphene oxide (rGO)/Au NPs nanocomposite followed by the immobilization of capture antibodies on its surface. After performing a sandwich immunoreaction, the quantitatively captured HRP-Au NP nanoprobes could catalyze oxidation of aniline to produce electroactive polyaniline on the immunosensor surface. The electrochemical measurement of polyaniline enabled a novel detection strategy for HRP-based immunoassay. Both the signal amplification of the HRP-Au NP nanoprobe and the electron transfer acceleration of rGO/Au NPs on the immunosensor surface greatly improved the detection sensitivity of the immunoassay method. With the use of human IgG as a model analyte, this method showed a wide linear range over 4 orders of magnitude with a detection limit of 9.7 pg/mL. In addition, the immunosensor had low cost, satisfactory reproducibility and stability, and acceptable reliability. The relatively positive potential range for the polyaniline measurement completely excluded the conventional interference from dissolved oxygen. Thus, this method provides a promising potential for practical applications.
Silver dendrites have received immense attention because of their fascinating hierarchical structures and unique properties. Depending on the methods of synthesis, Ag dendrites can be implemented in numerous fields. This review summarizes a variety of Ag dendrites preparation techniques. The involved growth mechanisms are investigated in order to control the formation progress more effectively. With regard to the applications, this article mainly focuses on surface enhanced Raman spectroscopy, catalysis, superhydrophobic surface and surface enhanced fluorescence by using Ag dendrites. The remaining issues of the preparation methods, which impede the practical applications of Ag dendrites, are pointed out to enlighten their future research.
Mesoporous silica nanoparticles (MSNs) have been explored as controlled drug delivery systems since the early 2000s, but many fundamental questions remain for this important application. We sought to design a pH controlled delivery system of gentamicin, an aminoglycoside antibiotic, based on MSNs. Under optimal conditions, MSN was able to load 219 µg gentamicin per mg MSNs. Polymeric networks encompassing gentamicin loaded MSNs were then established to tune the release kinetics. Embedding of drug pre-loaded MSNs was performed by an efficient layer-by-layer (LbL) self-assemble strategy using polystyrene sulfonate (PSS) and poly (allylamine hydrochloride) (PAH). We characterised the release kinetics by nonlinear mixed-effects modelling in the S-ADAPT software. The mean release time from uncoated MSNs was 3.6 days at pH 7.4 and 0.4 days at pH 1.4. A further slower release was achieved by diffusion through one or two PSS/PAH bilayer(s) which had a mean transit time of 6.0 days at pH 7.4 and 3.5 days at pH 1.4. The number of bilayers affected the shape of the release profile. The developed nano-drug carriers combined with the self-assembled polyelectrolyte coating allowed us to tune the release kinetics by pH and the number of bilayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.