New copper(II) complexes-dimeric-[Cu(nphen)(gly)(HO)] (1) and [Cu(dmphen)(gly)(NO)(HO)] (2) (nphen = 5-nitro-1,10-phenanthroline, dmphen = 4,7-dimethyl-1,10-phenanthroline, and gly = glycine)-have been synthesized and characterized by CHN analysis, single-crystal X-ray diffraction techniques, FTIR, EPR spectroscopy, and cyclic voltammetry. The CT-DNA-binding properties of these complexes have been investigated by thermal denaturation measurements and both absorption and emission spectroscopy. The DNA cleavage activity of these complexes has been studied on supercoiled pUC19 plasmid DNA by gel electrophoresis experiments in the absence and presence of HO. Furthermore, the interaction of these complexes with bovine serum albumin (BSA) has been investigated using absorption and emission spectroscopy. The thermodynamic parameters, free-energy change (ΔG), enthalpy change (ΔH), and entropy change (ΔS) for BSA + complexes 1 and 2 systems have been calculated by the van't Hoff equation at three different temperatures (293.2, 303.2, and 310.2 K). The distance between the BSA and these complexes has been determined using fluorescence resonance energy transfer (FRET). Conformational changes of BSA have been observed using the synchronous fluorescence technique. In addition, in vitro cytotoxicities of these complexes on tumor cell lines (Caco-2, A549, and MCF-7) and healthy cells (BEAS-2B) have been examined. The antimicrobial activity of the complexes has also been tested on certain bacteria cells. The effect of mono and dimeric in the above complexes is presented and discussed. New copper(II) complexes-dimeric-[Cu(nphen)(gly)(HO)] (1) and [Cu(dmphen)(gly) (NO)(HO)] (2) (nphen = 5-nitro-1,10-phenanthroline, dmphen = 4,7-dimethyl-1,10-phenanthroline and gly = glycine)-have been synthesized and characterized by CHN analysis, single-crystal X-ray diffraction techniques, FTIR and EPR spectroscopy. They have been tested for their in vitro DNA/BSA interactions by the spectroscopic methods. These complexes exhibited higher cytotoxic and antimicrobial activities. Complex 1 shows better DNA / BSA interactions in comparison to complex 2.
Yttrium(III) equilibria in the presence of catecholamines adrenaline (AD), noradrenaline (NAD), and dopamine (DP) have been investigated by potentiometric titration in aqueous solution in I ) 0.20 mol‚dm -3 KCl ionic medium and at 298.15 K. The complexation model for Y(III)-catecholamine systems has been established by the "BEST" software from the potentiometric data. The types of complexes in the yttrium(III)-catecholamine systems have been ascertained, and the protonation constants for catecholamines and the stability constants for yttrium(III) complexes with catecholamines have been obtained. The stability constants of YHL 2+ -and Y(HL) 2 +type complexes are reported. Catecholamines can form stable yttrium(III) complexes with the phenolic hydroxyl groups of catecholamines as the binding site to yttrium(III). In terms of the ligands, the stability of complexes ranks in an order such as dopamine > adrenaline > noradrenaline. The stability constants of Y(III)-adrenaline complexes are higher than their La(III) complexes due to the higher ionic potential of Y(III). The ionic radii of Ca(II) and Y(III) are roughly equal, but Y(III) has a higher charge than Ca(II). Therefore, Y(III)-catecholamine complexes are relatively more stable than Ca(II)-catecholamine complexes. This result may be utilized for in vitro and in vivo studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.