New copper(II) complexes-dimeric-[Cu(nphen)(gly)(HO)] (1) and [Cu(dmphen)(gly)(NO)(HO)] (2) (nphen = 5-nitro-1,10-phenanthroline, dmphen = 4,7-dimethyl-1,10-phenanthroline, and gly = glycine)-have been synthesized and characterized by CHN analysis, single-crystal X-ray diffraction techniques, FTIR, EPR spectroscopy, and cyclic voltammetry. The CT-DNA-binding properties of these complexes have been investigated by thermal denaturation measurements and both absorption and emission spectroscopy. The DNA cleavage activity of these complexes has been studied on supercoiled pUC19 plasmid DNA by gel electrophoresis experiments in the absence and presence of HO. Furthermore, the interaction of these complexes with bovine serum albumin (BSA) has been investigated using absorption and emission spectroscopy. The thermodynamic parameters, free-energy change (ΔG), enthalpy change (ΔH), and entropy change (ΔS) for BSA + complexes 1 and 2 systems have been calculated by the van't Hoff equation at three different temperatures (293.2, 303.2, and 310.2 K). The distance between the BSA and these complexes has been determined using fluorescence resonance energy transfer (FRET). Conformational changes of BSA have been observed using the synchronous fluorescence technique. In addition, in vitro cytotoxicities of these complexes on tumor cell lines (Caco-2, A549, and MCF-7) and healthy cells (BEAS-2B) have been examined. The antimicrobial activity of the complexes has also been tested on certain bacteria cells. The effect of mono and dimeric in the above complexes is presented and discussed. New copper(II) complexes-dimeric-[Cu(nphen)(gly)(HO)] (1) and [Cu(dmphen)(gly) (NO)(HO)] (2) (nphen = 5-nitro-1,10-phenanthroline, dmphen = 4,7-dimethyl-1,10-phenanthroline and gly = glycine)-have been synthesized and characterized by CHN analysis, single-crystal X-ray diffraction techniques, FTIR and EPR spectroscopy. They have been tested for their in vitro DNA/BSA interactions by the spectroscopic methods. These complexes exhibited higher cytotoxic and antimicrobial activities. Complex 1 shows better DNA / BSA interactions in comparison to complex 2.
Vanillic acid, a vegetable phenolic compound, is a strong antioxidant. The aim of the present study was to determine its effects on mitomycin C-induced DNA damage in human blood lymphocyte cultures in vitro, both alone and in combination with mitomycin C (MMC). The cytokinesis block micronucleus test and alkaline comet assay were used to determine genotoxic damage and anti-genotoxic effects of vanillic acid at the DNA and chromosome levels. MMC induced genotoxicity at a dose of 0.25 µg/ml. Vanillic acid (1 µg/ml) significantly reduced both the rates of DNA damaged cells and the frequency of micronucleated cells. A high dose of vanillic acid (2 µg/ml) itself had genotoxic effects on DNA. In addition, both test systems showed similar results when tested with the negative control, consisting of dimethyl sulfoxide (DMSO) in combination with vanillic acid (1 µg/ml)+MMC. In conclusion, vanillic acid could prevent oxidative damage to DNA and chromosomes when used at an appropriately low dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.