Control of structures in soft materials with long-range order forms the basis for applications such as displays, liquid-crystal biosensors, tunable lenses, distributed feedback lasers, muscle-like actuators and beam-steering devices. Bistable, tristable and multistable switching of well-defined structures of molecular alignment is of special interest for all of these applications. Here we describe the facile optical creation and multistable switching of localized configurations in the molecular orientation field of a chiral nematic anisotropic fluid. These localized chiro-elastic particle-like excitations--dubbed 'triple-twist torons'--are generated by vortex laser beams and embed the localized three-dimensional (3D) twist into a uniform background. Confocal polarizing microscopy and computer simulations reveal their equilibrium internal structures, manifesting both skyrmion-like and Hopf fibration features. Robust generation of torons at predetermined locations combined with both optical and electrical reversible switching can lead to new ways of multistable structuring of complex photonic architectures in soft materials.
We explore spatially localized solitonic configurations of a director field, generated using optical realignment and laser-induced heating, in frustrated chiral nematic liquid crystals confined between substrates with perpendicular surface anchoring. We demonstrate that, in addition to recently studied torons and Hopf-fibration solitonic structures (hopfions), one can generate a host of other axially symmetric stable and metastable director field configurations where local twist is matched to the surface boundary conditions through introduction of point defects and loops of singular and nonsingular disclinations. The experimentally demonstrated structures include the so-called "baby-skyrmions" in the form of double twist cylinders oriented perpendicular to the confining substrates where their double twist field configuration is matched to the perpendicular boundary conditions by loops of twist disclinations. We also generate complex textures with arbitrarily large skyrmion numbers. A simple back-of-the-envelope theoretical analysis based on free energy considerations and the nonpolar nature of chiral nematics provides insights into the long-term stability and diversity of these inter-related solitonic field configurations, including different types of torons, cholestric-finger loops, two-dimensional skyrmions, and more complex structures comprised of torons, hopfions, and various disclination loops that are experimentally observed in a confinement-frustrated chiral nematic system.
The miniaturization of current image
sensors is largely limited
by the volume of the optical elements. Using a subwavelength-patterned
quasi-periodic structure, also known as a metasurface, one can build
planar optical elements based on the principle of diffraction. Recent
demonstrations of high-quality metasurface optical elements are mostly
based on high-refractive-index materials. Here, we present a design
of low-contrast metasurface-based optical elements. We fabricate and
experimentally characterize several silicon nitride-based lenses and
vortex beam generators. The fabricated lenses achieved beam spots
of less than 1 μm with numerical apertures as high as ∼0.75.
We observed a transmission efficiency of 90% and focusing efficiency
of 40% in the visible regime. Our results pave the way toward building
low-loss metasurface-based optical elements at visible frequencies
using low-contrast materials and extend the range of prospective material
systems for metasurface optics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.