In an effort to show the influence of the hybridization method in hybrid fabric reinforced composites within the characteristic of the fracture and the mechanical properties, two laminate reinforced with bi-directional woven were developed, where one of them was reinforced with a hybrid strand (hybrid strand composite laminate) and the other with a different strands (hybrid fabric composite laminate). Both laminates used polyester resin, Kevlar-49 and glass-E fibers, had four layers and were prepared industrially by hand lay-up manufacturing. The percentages by weight of fiberglass and Kevlar in each type of woven are equal. The hybrid strand composite laminate showed a higher tensile strength, however the hybrid fabric composite laminate showed superior properties in three-point bending test, for example, 41.7 % superiority in flexural strength. The results showed that the hybridization method in hybrid reinforced composites influences the mechanical behavior of laminates and the formation and spread of damage.
The use of composites in manufacturing equipment and products is taking a very important space in the industry in general. Moreover these materials have unique characteristics when analyzed separately from constituents who are part of them. However it is know that cares must be taken in their manufacture, as the use of appropriate process and the composition of each element, in addition to adherence fiber / matrix, which is a major factor in obtaining of the final mechanical strength of the product. One should also take into account whether the composites are environmentally friendly. For this reason, in this work, a composite partially ecological was made, using as reinforcement, a sisal woven and, as matrix, the polyester resin. Seeking to improve the adherence fiber / matrix, a treatment in sisal woven was performed with aqueous solution of sodium hydroxide (NaOH) at a concentration of 3%. The composite subjected to this treatment presented, in bending test, a better mechanical performance, with an increase of 27% in the flexion strength and of 54% in maximum strain, but there was a reduction of about 15% in its flexural modulus.
This paper presents an evaluation of the mechanical and physical behavior of the type E glass fiber-reinforced polymeric composite when exposed to environmental aging agents in an effluent treatment plant. The composite was made by the hand layup process, and the test bodies were made according to the American Society for Testing and Materials standards D3039-14 and D790-10 for the uniaxial tensile and three-point bending tests, respectively, where they were exposed for a period of eight months, conditioned above and immersed in the effluent of the treatment plant. The physicochemical characterization of the effluent was evaluated considering the following parameters: pH, conductivity, sulfate, alkalinity, acidity, sulfide, and temperature, aiming to characterize the effluent conditions in direct and indirect contact with the composite. After the exposure period, tests were carried out for morphological evaluation, structural integrity evaluation, mechanical performance evaluation, and fracture characterization of the polymer composite, thereby leading to a comparison of the mechanical characteristics in the original state to that of the aged state (after exposure in the effluent treatment plant). The polymeric composite studied was stable after the aging period, with little mass variation, less than 0.5%, and slight changes in color. The mechanical properties evaluated also did not change significantly during the study period. Variations in uniaxial tensile strength were less than 1.4% and for three-point bending less than 10%, thus showing that the type E glass fiber-reinforced polymer composite has potential for use in harsh environments such as in effluent treatment plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.