Oxazolidinone is a five-member heterocyclic ring exhibiting potential medicinal properties with preferential antibacterial activity. Scientists reported various synthetic procedures for this heterocyclic structure. Current review articles tried to cover each and every potential aspect of oxazolidinone like synthetic routes, pharmacological mechanism of action, medicinal properties, and current research activities.
The Protein Structure Initiative:Biology-Materials Repository (PSI:Biology-MR; MR; http://psimr.asu.edu) sequence-verifies, annotates, stores, and distributes the protein expression plasmids and vectors created by the Protein Structure Initiative (PSI). The MR has developed an informatics and sample processing pipeline that manages this process for thousands of samples per month from nearly a dozen PSI centers. DNASU (http://dnasu.asu.edu), a freely searchable database, stores the plasmid annotations, which include the full-length sequence, vector information, and associated publications for over 130,000 plasmids created by our laboratory, by the PSI and other consortia, and by individual laboratories for distribution to researchers worldwide. Each plasmid links to external resources, including the PSI Structural Biology Knowledgebase (http://sbkb.org), which facilitates cross-referencing of a particular plasmid to additional protein annotations and experimental data. To expedite and simplify plasmid requests, the MR uses an expedited material transfer agreement (EP-MTA) network, where researchers from network institutions can order and receive PSI plasmids without institutional delays. Currently over 39,000 protein expression plasmids and 78 empty vectors from the PSI are available upon request from DNASU. Overall, the MR’s repository of expression-ready plasmids, its automated pipeline, and the rapid process for receiving and distributing these plasmids more effectively allows the research community to dissect the biological function of proteins whose structures have been studied by the PSI.
Background: Polyphenols are natural compounds synthesized exclusively by plants with chemical features related to phenolic substances and eliciting strong antioxidants properties. Objective: The aim of this paper is to give a reliable overview of the chemical classification of natural polyphenols. Methods: Literature survey was done through google scholar, pubmed and scopus search engine. Results and Discussion: These molecules or classes of natural substances are characterized by two phenyl rings at least and one or more hydroxyl substituents. This description comprehends a large number of heterogeneous compounds with reference to their complexity. Therefore, polyphenols can be simply classified into flavonoids and non-flavonoids, or be subdivided in many sub-classes depending on the number of phenol units within their molecular structure, substituent groups, and/or the linkage type between phenol units. Polyphenols are widely distributed in plant tissues where they mainly exist in form of glycosides or aglycones. The structural diversity of flavonoid molecules arises from variations in hydroxylation pattern and oxidation state resulting in a wide range of compounds: flavanols, anthocyanidins, anthocyanins, isoflavones, flavones, flavonols, flavanones, and flavanonols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.