INTRODUCTION: The teaching-learning based optimization (TLBO) algorithm is a recently developed algorithm. The proposed work presents a design of a master-slave TLBO algorithm. OBJECTIVES: This research aims to design a master-slave TLBO algorithm to improve its performance and system utilization for CEC2006 single-objective benchmark functions. METHODS: The proposed approach implemented using OpenMP and CUDA C, a hybrid programming approach to enhance the utilization of the system's computational resources. The device utilization and performance of the proposed approach evaluated using CEC2006 benchmark functions. RESULTS: The proposed approach obtains best results in significantly reduced time for CEC2006 benchmark functions. The maximum speed-up achieved is 30.14X. The average GPGPU utilization is 90% and the average utilization of logical processors is more than 90%. CONCLUSION: The master-slave TLBO algorithm improves the utilization of computational resources significantly and obtains the best results for CEC2006 benchmark functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.