Fluoroethylene carbonate (FEC) and vinylene carbonate (VC) are the most frequently used electrolyte additives to enhance the lifetime of anode materials in Li-ion batteries, but for silicon it is still ambiguous when FEC or VC is more beneficial. Herein, a low-cost nanostructured silicon/carbon anode derived from HSiCl3 is tailored by the rational choice of the additive, to obtain an anode material outperforming current complex silicon structures. We demonstrate highly reversible areal capacities of up to 5 mAh/cm2 at 4.4 mg/cm2 mass loading, a specific capacity of 1280 mAh/gAnode, a capacity retention of 81 % after 500 deep-discharge cycles versus lithium metal and successful full-cell tests with high-voltage cathodes meeting the requirements for real application. Electrochemical impedance spectroscopy and post-mortem investigation provide new insights in tailoring the interfacial properties of silicon-based anodes for high performance anode materials based on an alloying mechanism with large volume changes. The role of fluorine in the FEC-derived interfacial layer is discussed in comparison with the VC-derived layer and possible degradation mechanisms are proposed. We believe that this study gives a valuable understanding and provides new strategies on the facile use of additives for highly reversible silicon anodes in Li-ion batteries
Silicon based polymers obtained by ammonolysis of organochlorosilylboranes and their pyrolytic transformation into Si-B-C-N ceramics were studied by a detailed solid-state NMR investigation. Sol–gel polymerisation/pyrolysis routes were applied to form Si-B-C-N materials with exceptional high-temperature stability. The polymer to ceramic conversion was analyzed by 11B, 13C, 15N, and 29Si MAS NMR spectroscopy as well as by thermal analysis measurements coupled with mass spectroscopy (TGA–MS). The results showed that a significant change in the carbon-, silicon-, and boron-coordination environments occurs during pyrolysis. An evolution of cleavage of silcon–carbon–boron bridges and the formation of new BN3 sites was observed. The NMR data obtained suggest the presence of a rather homogeneous dispersion of the boron atoms in the as synthesized silicon carbonitride phase, supporting the high thermal stability with respect to decomposition found in these compounds.Key words: organosilicon polymers, polymer pyrolysis, SiBCN ceramics, solid-state NMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.