Glucosinolates are plant secondary metabolites that are hydrolysed by the action of myrosinases into various products (isothiocyanates, thiocyanates, epithionitriles, nitriles, oxazolidines). Massive hydrolysis of glucosinolates occurs only upon tissue damage but there is also evidence indicating metabolism of glucosinolates in intact plant tissues. It was originally believed that the glucosinolate-myrosinase system in intact plants was stable due to a spatial separation of the components. This has been coined as the 'mustard oil bomb' theory. Proteins that form complexes with myrosinases have been described: myrosinase-binding proteins (MBPs) and myrosinase-associated proteins (MyAPs/ESM). The roles of these proteins and their biological relevance are not yet completely known. Other proteins of the myrosinase enzyme system are the epithiospecifier protein (ESP) and the thiocyanateforming protein (TFP) that divert the glucosinolate hydrolysis from isothiocyanate production to nitrile/epithionitrile or thiocyanate production. Some glucosinolate hydrolysis products act as plant defence compounds against insects and pathogens or have beneficial health effects on humans. In this review, we survey and critically assess the available information concerning the localization, both at the tissular/cellular and subcellular level, of the different components of the myrosinase enzyme system. Data from the model plant Arabidopsis thaliana is compared to that from other glucosinolate-producing Brassicaceae in order to show common as well as divergent features of the 'mustard oil bomb' among these species.
Glucosinolates are plant secondary metabolites present in Brassicaceae plants such as the model plant Arabidopsis thaliana. Intact glucosinolates are believed to be biologically inactive, whereas degradation products after hydrolysis have multiple roles in growth regulation and defense. The degradation of glucosinolates is catalyzed by thioglucosidases called myrosinases and leads by default to the formation of isothiocyanates. The interaction of a protein called epithiospecifier protein (ESP) with myrosinase diverts the reaction toward the production of epithionitriles or nitriles depending on the glucosinolate structure. Here we report the identification of a new group of nitrile-specifier proteins (AtNSPs) in A. thaliana able to generate nitriles in conjunction with myrosinase and a more detailed characterization of one member (AtNSP2). Recombinant AtNSP2 expressed in Escherichia coli was used to test its impact on the outcome of glucosinolate hydrolysis using a gas chromatography-mass spectrometry approach. AtNSP proteins share 30 -45% sequence homology with A. thaliana ESP. Although AtESP and AtNSP proteins can switch myrosinase-catalyzed degradation of 2-propenylglucosinolate from isothiocyanate to nitrile, only AtESP generates the corresponding epithionitrile. Using the aromatic benzylglucosinolate, recombinant AtNSP2 is also able to direct product formation to the nitrile. Analysis of glucosinolate hydrolysis profiles of transgenic A. thaliana plants overexpressing AtNSP2 confirms its nitrile-specifier activity in planta. In silico expression analysis reveals distinctive expression patterns of AtNSPs, which supports a biological role for these proteins. In conclusion, we show that AtNSPs belonging to a new family of A. thaliana proteins structurally related to AtESP divert product formation from myrosinasecatalyzed glucosinolate hydrolysis and, thereby, likely affect the biological consequences of glucosinolate degradation. We discuss similarities and properties of AtNSPs and related proteins and the biological implications.Brassicaceae plants such as oilseed rape (Brassica napus), turnip (Brassica rapa), and white mustard (Sinapis alba) as well as the model plant Arabidopsis thaliana contain a group of secondary metabolites known as glucosinolates (GSLs) 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.