General Video Game Playing (GVGP) aims at designing an agent that is capable of playing multiple video games with no human intervention. In 2014, The General Video Game AI (GVGAI) competition framework was created and released with the purpose of providing researchers a common open-source and easy to use platform for testing their AI methods with potentially infinity of games created using Video Game Description Language (VGDL). The framework has been expanded into several tracks during the last few years to meet the demand of different research directions. The agents are required either to play multiple unknown games with or without access to game simulations, or to design new game levels or rules. This survey paper presents the VGDL, the GVGAI framework, existing tracks, and reviews the wide use of GVGAI framework in research, education and competitions five years after its birth. A future plan of framework improvements is also described.
Abstract. Monte Carlo Tree Search techniques have generally dominated General Video Game Playing, but recent research has started looking at Evolutionary Algorithms and their potential at matching Tree Search level of play or even outperforming these methods. Online or Rolling Horizon Evolution is one of the options available to evolve sequences of actions for planning in General Video Game Playing, but no research has been done up to date that explores the capabilities of the vanilla version of this algorithm in multiple games. This study aims to critically analyse the different configurations regarding population size and individual length in a set of 20 games from the General Video Game AI corpus. Distinctions are made between deterministic and stochastic games, and the implications of using superior time budgets are studied. Results show that there is scope for the use of these techniques, which in some configurations outperform Monte Carlo Tree Search, and also suggest that further research in these methods could boost their performance.
This paper describes a new evolutionary algorithm that is especially well suited to AI-Assisted Game Design. The approach adopted in this paper is to use observations of AI agents playing the game to estimate the game's quality. Some of best agents for this purpose are General Video Game AI agents, since they can be deployed directly on a new game without game-specific tuning; these agents tend to be based on stochastic algorithms which give robust but noisy results and tend to be expensive to run. This motivates the main contribution of the paper: the development of the novel N-Tuple Bandit Evolutionary Algorithm, where a model is used to estimate the fitness of unsampled points and a bandit approach is used to balance exploration and exploitation of the search space. Initial results on optimising a Space Battle game variant suggest that the algorithm offers far more robust results than the Random Mutation Hill Climber and a Biased Mutation variant, which are themselves known to offer competitive performance across a range of problems. Subjective observations are also given by human players on the nature of the evolved games, which indicate a preference towards games generated by the N-Tuple algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.