Reducing emission from deforestation and forest degradation (REDD+) programme has prime concern to carbon stock enhancement rather than biodiversity conservation. Participatory managed forest has been preparing to get benefit under this programme, and collaborative forest is one of them in Nepal. Hence, this research is intended to assess the relationship between carbon stock and biodiversity. Three collaborative forests (CFMs) were selected as study sites in Mahottari district, Nepal. Altogether 96 sample plots were established applying stratified random sampling. The plot size for tree was 20 m × 25 m. Similarly, other concentric plots were established. Diameter at breast height (DBH) and height were measured, species were counted, and soil samples were collected from 0–0.1, 0.1–0.3, and 0.3–0.6 m depths. The biomass was calculated using equation of Chave et al. and converted into carbon, soil carbon was analyzed in laboratory, and plant biodiversity was calculated. Then, relation between carbon stock and biodiversity was developed. Estimated carbon stocks were 197.10, 222.58, and 274.66 ton ha−1 in Banke-Maraha, Tuteshwarnath, and Gadhanta-Bardibas CFMs, respectively. The values of Shannon-Wiener Biodiversity Index ranged 2.21–2.33. Any significant relationship between carbon stock and biodiversity, and was not found hence REDD+ programme should emphasize on biodiversity conservation.
Different plant species have different capacity of carbon sequestration but it is not assessed yet in Nepal. Therefore, this study was done to assess the species-wise carbon sequestration in two periods in forests. Three collaborative and three community forests were selected for the study. The selected forests were surveyed using GPS and mapped and stratified into tree, pole, and regeneration. Specifically 32, 33, and 31 samples were collected from Banke-Maraha, Tuteshwarnath, and Gadhanta-Bardibash collaborative forests, respectively, while 30, 25, and 22 samples were collected from Chureparwati, Buddha, and Chyandanda community forests correspondingly. The sample plots were of 25 m × 20 m for tree strata. The diameter and height of plants were measured and samples were collected for three consecutive years. The estimated carbon stock of Shorea robusta was the highest 35.93 t ha−1 in 2011 which was slightly decreased to 34.43 t ha−1 in 2012 and reached 32.02 t ha−1 in 2013 in Banke-Maraha collaborative forest but it was the least 7.97, 8.92, and 10.29 t ha−1 in 2011, 2012, and 2013, respectively, in Chyandanda community forest. The highest carbon sequestration was recorded about 5.02 t ha−1 of Shorea robusta in Chyandanda community forest in between t2013 and t2012.
Present study determines the causes and seasonal variation of red bloom in fishponds of Eastern, Western and Central regions of Nepal. Monthly monitoring of water quality and phytoplankton was carried out for one year. Water parameters such as NH 3 -N, total phosphorus, total Kjeldahl nitrogen (TKN), total dissolved solids (TDS) and conductivity were significantly higher (p<0.05) in red bloom fishponds than non-red bloom fishponds. The total density of euglenophytes in red-bloom fishponds was significantly higher (P<0.05) (1970±260 cells L
An experiment was carried to assess the effect of red algal bloom on growth and production of carp, water quality and profit from carp for 120 days at Aquaculture Farm of Agriculture and Forestry University, Chitwan. The experiment included two treatments: carp polyculture in non-red pond and carp polyculture in red pond with algal bloom each with three replicates. Carp fingerlings were stocked at 1 fish/m2 and fed with pellet containing 24% CP at 3% body weight. Net yield of rohu was found significantly higher (p<0.05) in non-red ponds (0.38±0.01 t ha-1) than red ponds (0.24±0.05 t ha-1). Survival of rohu (84.9±1.4%), bighead (95.2±2.0%) and mrigal (88.1±14.4%) were also significantly higher (p<0.05) in non-red ponds than red ponds. Red algal bloom affected DO, nitrate and chlorophyll-a, nitrite, total nitrogen, total phosphorus, total dissolved solids and conductivity. However, overall carp production and profit from carp remained unaffected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.