Productivity of Indian mustard, an important oilseed crop of India, is affected by several pathogens. Among them, the hemibiotroph Sclerotinia sclerotiorum, which causes sclerotinia rot disease, is the most devastating fungal pathogen causing up to 90% yield losses. The availability of host resistance is the only efficient approach to control and understand the host–pathogen interaction. Therefore, the present investigation was carried out using six Indian mustard genotypes with contrasting behavior towards sclerotinia rot to study the antioxidant resistance mechanism against S. sclerotiorum. The plants at post-flowering stage were inoculated with five-day-old pure culture of S. sclerotiorum using artificial stem inoculation method. Disease evaluation revealed significant genotypic differences for mean lesion length among the tested genotypes, where genotype DRMR 2035 was found highly resistant, while genotypes RH 1569 and RH 1633 were found highly susceptible. The resistant genotypes had more phenolics and higher activities of peroxidase, catalase and polyphenol oxidase which provide them more efficient and strong antioxidant systems as compared with susceptible genotypes. Studies of antioxidative mechanisms validate the results of disease responses.
Sclerotinia stem rot is one of the utmost important disease of mustard, causing considerable losses in seed yield and oil quality. The study of the genetic and proteomic basis of resistance to this disease is imperative for its effective utilization in developing resistant cultivars. Therefore, the genetic pattern of Sclerotinia stem rot resistance in Indian mustard was studied using six generations (P1, P2, F1, F2, BC1P1, and BC1P2) developed from the crossing of one resistant (RH 1222-28) and two susceptible (EC 766300 and EC 766123) genotypes. Genetic analysis revealed that resistance was governed by duplicate epistasis. Comparative proteome analysis of resistant and susceptible genotypes indicated that peptidyl-prolyl cis-trans isomerase (A0A078IDN6 PPIase) showed high expression in resistant genotype at the early infection stage while its expression was delayed in susceptible genotypes. This study provides important insight to mustard breeders for designing effective breeding programs to develop resistant cultivars against this devastating disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.