For decades, twin-roll casting has been applied for manufacturing aluminum alloy sheets. This conventional process contributes to make thin aluminum sheets from the molten metal directly. Recently, vertical-type high-speed twin-roll casting (HSTRC) has been developed with much higher casting speed rather than the horizontal-type. Some modifications such as feeding nozzle and water-cooling system of copper rolls contribute to increase cooling rates. This characteristic leads to many metallurgical advantages like grain refinement, super-saturation of alloying elements and fine distribution of secondary particles. The objective of this study is to investigate the constituent particles in HSTRC aluminum alloy. The commercial Al-Mn alloy strip was successfully fabricated by HSTRC. Clearly different microstructure was found in thickness direction. Many constituent particles observed along the grain boundaries/cell boundaries as well as inside of Al matrix on the surface area, while eutectic structure around globular grain boundaries was observed in mid-central area. The morphology as well as chemical compositions of the constituent particles were investigated.
Al-Mn based alloys with high-manganese content are expected to have improved mechanical properties due to solid solution hardening and/or dispersion hardening. However, the increase of Mn solubility of the alloy is difficult by using the conventional DC casting. In order to solve this problem, in the present study, we focused on the twin-roll casting method which is characterized by high cooling rates. Several kinds of high Mn-containing Al-Mn-Si alloy strips were fabricated by using a vertical-type high-speed twin-roll caster equipped with a pair of water-cooled copper rolls. Direct temperature measurement of the liquid melt during the casting was also performed. The alloy strips of various compositions containing up to 4 Mn and 2 Si (wt%) were successfully obtained. By observing the microstructure of the cross section of the strip, we found the characteristic solidified structure. The solidified structure consisted of three layers. Two solidified shells with a columnar dendrite structure grew from the roll surfaces toward the strip center. In the mid-thickness region, the band structure consisting of equiaxed dendrites and globular grains was observed between the solidified shells. Very fine primary particles were observed in the matrix near the strip surface, while, relatively coarse particles with blocky and needle-like shape were observed in the central band of the as-cast strip. The electric conductivity measurement was performed for the as-cast strips. Mn solubility in Al matrix was estimated from the obtained values. The estimated Mn solubility in the Al-2Mn-xSi strips was between 1.5 ~ 1.8wt% Mn. It was over 1.43wt%Mn for the Al-4Mn-xSi strips. We found that the Mn solubility of the as-cast strips was considerably high. The strips were cold-rolled to the sheets and then annealed at various conditions. They were subjected to the tensile tests, and the effects of solid solution hardening and dispersion hardening are discussed.
A color metallography using Weck's reagent was employed to investigate the characteristic microstructure of AlMnSi alloy strip fabricated by high-speed twin-roll casting. The microstructure of the strip consists of two components: solidified shells and a central band. By Weck's reagent etching, the colorful microstructure was obtained, and doughnut-like patterns were observed in the globular grains. Based on the presence of the patterns, the globular grains were divided into two types: Type-I and Type-II. Type-I grains exhibited the core-like structure. On the other hand, Type-II grains had no color contrasts in the grain. SEM-EDS analysis of Type-I grains revealed the high correlation between the obtained color and micro-segregation of Si. TEM and STEM analyses confirmed the formation of an amorphous film on the surface of Al substrate by the etching. The thickness of the film and the roughness of the Al substrate under the film were different from location to location. The local change of the film's features resulted in the different color in the optical microscopic image. Based on the microstructure observation, the origin of globular grains observed in the central band in the AlMnSi alloy strip was discussed in detail.
Mn-containing (2 and 4 mass%) AlMn-based alloys were fabricated by high-speed twin-roll casting (HSTRC). Al4 mass%Mn 1 mass%Si strips contained coarse particles in the central band of the cast strips. Microstructure and chemical analyses revealed that the particles were primarily Al 6 (MnFe) and ¢-Al(MnFe)Si. These particles formed during the solidification process of the residual liquid, which slowly cooled after the strip exited the roll gap during HSTRC. However, blowing compressed air onto the strip surface as it exited the roll gap rapidly cooled the residual liquid, reducing the number and size of large particles in the central band region. The cold-rolled and annealed sheets fabricated from the strips exhibited a refined and homogenous microstructure. Consequently, both the strength and elongation of the sheets were improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.